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Why functional analysis?

Recall a typical problem from linear algebra.

0.1 problem. Let A be an n× n matrix with real entries, and let y ∈ Rn be a
given vector. Find all the vectors x ∈ Rn such that

Ax = y. (1)

The vector x has to be determined. Borrowing geometrical terminology we
call the vectors x, y points. The proper framework for this problem is that of
vector spaces, or linear spaces (Rn) and linear mappings, or linear operators (A).

Now note that a point x = (x1, . . . , xn) ∈ Rn can be viewed as a function
x : {1, . . . , n} → R, i.e.

Rn = {x : {1, . . . , n} → R} .

So our points are actually functions on a finite set. Linear algebra is the proper
setting to deal with them.

Differently from Linear Algebra, Functional analysis deals with prob-
lems (equations) where the sought-after object (unknown) is a function
on an infinite set.

Let us look at a more specific example.

0.2 problem. Let α, y0 ∈ R and assume we are given a continuous function
g : [0,+∞) → R. Find all the differentiable functions y : [0,+∞) → R such
that {

y′(t) = αy(t) + g(t) for all t ≥ 0
y(0) = y0

This is a Cauchy problem for a linear differential equation. Integrating the
differential equation on the interval [0, t] for an arbitrary t > 0 we get

y(t)− α

t∫
0

y(s)ds = y0 +

t∫
0

g(s)ds. (2)

The unknown is now a differentiable function y on the half line [0,+∞). Can we
view the set of differentiable functions on [0,+∞) as a linear space and regard
its elements y as points in the space? Can we consider the mapping

y = y(t) 7→ A[y] = A[y](t) , A[y](t) = y(t)− α

t∫
0

y(s)ds
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as a linear operator acting on the ‘point’ y of such a linear space? If so, then
the expression (2) could be written as

A[y](t) = h(t) , h(t) .
= y0 +

t∫
0

g(s)ds,

and the latter expression is reminiscent of (1). The main different with (1)
is that this time the unknown y is a function on an infinite set, namely the
half-line [0,+∞).

Functional analysis provides the best setting to adapt the notions of
linear space and linear operator to functions on infinite sets.

In the example of problem 0.2, the candidate linear space to work with is
the space of differentiable functions on the half line [0,+∞). This is actually
a subset of a wider set, the set of continuous functions on [0,+∞). Let us focus
on this set for a moment. For simplicity, we replace the half line [0,+∞) with
the closed interval [0, 1].

0.3 fact. The set of continuous functions on [0, 1] is a linear space. The concept
of linear space should be well-known to the student. However, we will re-
define it later on in this course. For the moment, think of a linear space as a
set, the elements of which are called vectors. On such set we are allowed to
take sums between two (or more) vectors and to multiply a vector by a real
number. In both cases, the operations should produce an element of the same
set as an outcome. Let us check that two such operations are possible on the
set of continuous functions on [0, 1], that we denote by C([0, 1]) from now
on. We must equip such set with two operations, namely sum between vectors
and product of a vector by a real number. Given f , g ∈ C([0, 1]), we introduce
f + g ∈ C([0, 1]) defined by

( f + g)(x) = f (x) + g(x). (3)

Given λ ∈ R and f ∈ C([0, 1]), we introduce λ f ∈ C([0, 1]) defined by

(λ f )(x) = λ f (x). (4)

Let us explain the above two definitions a little more thoroughly. In (3) there
are two + (plus) signs. Although they might apparently look alike, there is
a subtle difference between them. The plus sign on the right hand side rep-
resents an operation involving the two real numbers f (x) and g(x). Here x
is a generic real number in [0, 1]. The outcome of such operation is the real
number f (x) + g(x). So, this is a well-known operation. On the other hand,
the plus sign on the left hand side is a new object that we are introducing:
it involves two functions f and g, and it allows to build up a new function
f + g. The formula (3) defines such new function, in that is declares how f + g
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acts on a generic x ∈ [0, 1] and produces the image ( f + g)(x). Such image is
defined in terms of something totally familiar to all of us, i.e. the sum of two
real numbers. A similar situation occurs in (4). Here the well known operation
is the multiplication between the two real numbers λ and f (x), whereas the
new operation is the multiplication between a real number λ and a function
f . A key issue that we haven’t checked is that in both (3) and (4) the outcome
is an element of the set of continuous functions on [0, 1]. This is an easy ex-
ercise for a student familiar with the concept of continuous function. For the
sake of clarity, we shall define the notion of continuous function later on in a
more general framework. Finally, we should not forget that every linear space
should be equipped with a (unique) zero element, i.e. with a unique element
0 such that f + 0 = f for all f in the linear space. In the case of C([0, 1]), the
zero element is the constant zero function f (t) = 0 for all t ∈ [0, 1].

0.4 fact. The linear space C([0, 1]) defined above has dimension +∞, or more
precisely there exists no integer n such that the dimension of C([0, 1]) equals
n. Let us first recall from linear algebra what the dimension of a linear space
is: it is the largest possible integer number N of linearly independent vectors,
i.e. the largest possible number of vectors v1, . . . , vN for which α1v1 + . . . +
αNvN = 0 implies α1 = . . . = αN = 0, i.e. the largest possible number of
vectors in which none of them can be written as a linear combination of the
others. Now, how to prove that the dimension of C([0, 1]) is infinite? The best
option is to assume that it is finite and get to a contradiction, which would
prove the assertion. So, let us assume that the dimension of our linear space
C([0, 1]) is given by some (possibly very large) integer N ∈ N. Consider the
set of points

v0(t)
.
= 1, v1(t)

.
= t, v2(t)

.
= t2, . . . , vN(t)

.
= tN .

We claim that the above N + 1 points are linearly independent. Assume

N

∑
i=0

αiti = 0 (5)

for some α0, α1, . . . , αN ∈ R. Note that (5) must hold for all t ∈ [0, 1], so in
particular for t = 0. This implies α0 = 0 upon substituting t = 0 in (5). Now
divide (5) by t > 0, which gives

N

∑
i=1

α1ti−1 = 0

for all t > 0. Now, although we cannot substitute t = 0 above, we can send to
the limit t → 0. It is easy to see that we get α1 = 0. Iterating this procedure
we prove that α2 = . . . = αN = 0. Hence, the N + 1 monomials v0, . . . , vN
are linearly independent. But that contradicts the fact that the dimension of
the space was N, because we have found N + 1 linearly independent vectors.
Now, here N was an arbitrary integer. This proves the assertion.

5



Contents

We just “touched the main point about functional analysis with bare hands”.
Linear spaces of functions (such as the space C([0, 1]) in the above examples)
do not fit the classical background of linear algebra that we learned in our
bachelor studies, in which linear spaces were always assumed to be finite dimen-
sional. This had a lot of implications, most importantly linear mappings could be
expressed via matrices with a finite number of entries.

Functional analysis is the extension of linear algebra to linear spaces
with infinite dimension. Such spaces are typically spaces of functions on
infinite sets, often functions on subsets of R or subsets of the Euclidean
space Rn.

Let us now introduce another important issue regarding functional analy-
sis, which is that of distance measuring. It is well known that one can measure
distances in a finite dimensional linear space. In the most intuitive case, namely
the Euclidean space Rn, the distance between two points x = (x1, . . . , xn) and
y = (y1, . . . , yn) is given by the canonical formula

d(x, y) =
√
(x1 − y1)2 + . . . + (xn − yn)2.

Other non-canonical ways could be

d1(x, y) = |x1 − y1|+ . . . |xn − yn|,

or

d∞(x, y) = max
i=1,...,n

|xi − yi|.

We could measure distances between points using all of those distances, and
of course they might (except in the case n = 1) give rise to different concepts
of distance. A concept of distance easily defines a concept of closeness: very
intuitively, two points are close if their distance is small. A rigorous way to
introduce a notion of closeness is via the concept of limit, which is the basic
concept of mathematical analysis. Again, this concept should be well known
to the student. It will be re-defined for convenience below. In rough words, a
sequence (i.e. an infinite set v1, v2, v3, . . . , vn, . . . indexed by integer numbers)
of points in a linear space converges to a point v if the distance between vn and
v tends to zero as n → +∞. Now, clearly two separate notions of distances may
give rise to two separate notions of closeness, or convergence. However, here is an
important fact!

0.5 fact. Given a sequence of points {xk}+∞
k=1 ⊂ Rn and a point x ∈ Rn.

Then d1(xk, x) → 0 as k → +∞ if and only if the same holds with d2 or d∞
replacing d1. In other words, the notion of convergence of a sequence in Rn is
not affected by the choice of the ‘distance’ (d1, d, or d∞). Another way to see
it: ‘being close’ in the d1 sense is equivalent to being close in the d sense of
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in the d∞ sense. Proving this fact is not too difficult, but we shall omit the
details at this stage. The main idea is the following: think of x = (x1, . . . , xn)
and xk = ((xk)i, . . . , (xk)n) as vectors in Rn; having xk and x very close in
any of the three distances under consideration is equivalent to having the i-
th components (xk)i and xi very close (as real numbers!) for all i = 1, . . . , n.
The bottom line, here, is the following: in finite dimensional spaces, the concept of
closeness is independent of the distance we are using.

In finite dimensional spaces (more precisely, on finite dimensional
normed spaces, this concept will be introduced later on), different ways
of measuring distances generate the same notion of closeness. If two
points are close to each other in a finite dimensional space, this does
not depend on the type of distance we are using. This is, in general, not
true in infinite dimensional spaces. Therefore, having to deal with infi-
nite dimensional spaces, functional analysis explores many possible ways
to measure distances between points (functions).

It is instructive to produce an example of two separate notions of closeness
already at this stage in infinite dimensions.

0.6 example. Consider the space of continuous functions on [0, 1] denoted by
C([0, 1]). For each n ∈N we define the function

fn(x) = xn , x ∈ [0, 1].

We can actually see fn as a sequence of functions, i.e. a family of functions
indexed by a positive integer n. We may ask ourselves whether or not this
sequence converge to a limit, i.e. to a function f ∈ C([0, 1]). As explained
above, this notion has a lot to do with the concept of distance we are using.
The goal of this example is to show that fn has a limit with respect to some
distance, and has not with respect to some other one. For a given g ∈ C([0, 1])
let us define

‖ f ‖∞ := max
x∈[0,1]

| f (x)|, ‖ f ‖1 =

1∫
0

| f (x)|dx.

Since xn → 0 for all x ∈ [0, 1), the most reasonable candidate limit for this
sequence (no matter what distance we are using) is

f ≡ 0.

Let us compute

‖ fn − 0‖∞ = max
x∈[0,1]

| fn(x)| = max
x∈[0,1]

|xn| = 1.
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Therefore, fn does not converge to zero in the ∞ distance. On the other hand,

‖ fn − 0‖1 =

1∫
0

xndx =
1

n + 1
→ 0

as n→ +∞.

The student may, at this stage, wonder why distance measuring between
functions is so important. An easy answer comes, for instance, from numerical
methods for differential equations, a matter of massive impact in the applica-
tions. While working on a numerical scheme for a differential equation, one
needs to know whether or not the method is a good approximation of the so-
lution to the equation. How do we measure the approximation? We need to
be able to establish whether or not the solution to our numerical scheme is
close to the actual solution to the equation. Therefore, first of all we should
define what we mean by ‘close’. We shall get back to this point later on in this
section.

Before Fact 0.5, the only subject we invoked as a background was linear
algebra. All of a sudden, in Fact 0.5 we started dealing with sequences, lim-
its, etc, things we were used to in calculus and analysis. Functional analysis is
indeed a lot about analysis, not just linear algebra and linear mappings. In
fact,

Functional analysis is a subject in which analysis and linear algebra merge
together.

So far we provided a partial answer to the question ‘Why functional anal-
ysis?’. We tried somehow to justify functional analysis as a natural continua-
tion of a pedagogical path based on linear algebra and analysis. But is all that
of any use? Problem 0.2 is a good start, as it involves differential equations,
an undoubtedly useful tool in science and engineering. However, in many
practical situation we deal with optimisation problems, that is, given a variable
quantity, we want to compute its maximum or minimum value given a set of
constraint. Optimisation is probably the most important subject in industrial
applied mathematics.

0.7 fact. In finite dimensions, a continuous function f : K → R defined on
a bounded and closed set K ⊂ Rn has a maximum and a minimum. This
is a famous theorem in analysis due to Weierstrass. It is quite useful while
looking for the solution to an optimisation problem depending on finitely
many variable, since it guarantees under quite general assumptions that - no
matter how good we are in finding a solution to the problem - there actually is
a solution. The key issue behind Weierstrass theorem is the fact that a bounded
and closed set in finite dimension is always compact, i.e. every sequence in K
has a convergent subsequence.
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0.8 example. In classical mechanics, the trajectory of a material body subject
to conservative forces can be found by minimising the quantity

L =

T∫
0

[
m|ẋ(t)|2 + U(x(t))

]
dt,

in which the first term is the kinetic energy and second one the potential en-
ergy. The unknown of the problem is a curve [0, T] 3 t 7→ x(t) ∈ R3 standing
for the optimal trajectory, i. e. the unknown is a vector in which each compo-
nent is a differentiable function. Hence, the minimiser of the quantity L above
lives in an infinite dimensional space. Weierstrass Theorem no longer holds in
infinite dimensions, and ensuring that a quantity of the form of L attains the
minimum on some curve t 7→ x(t) is far from being trivial. This is due to the
fact that in infinite dimension it is much more difficult to prove that a given set is
compact.

One of the most important concepts developed in a functional analysis
course is that of compactness.

As briefly mentioned above, mathematical modelling in applied sciences
often relies on numerical calculus, in which (for example) the solution to a
differential equation is approximated via some finite elements method.

0.9 example. A differential equation

ẏ(t) = f (y(t), t), t ∈ [0, T],

can be approximated via finite difference methods e.g. by the set of equations

yi+1 = yi + (∆t) f (yi+1, t), (6)

with i ∈ {0, . . . , n− 1} and (∆t)n = T. The unknown of the system of equa-
tions in (6) is the (n + 1)-dimensional vector (y0, y1, . . . , yn), whereas the un-
known of the differential equation above is a function on [0, T], which lives
in an infinite dimensional space. In order to make sure that the numerical
scheme (6) works, one has to prove that a suitable interpolation (piecewise
constant, or piecewise linear) of the solution (y0, y1, . . . , yn) to (6) gets closer
and closer to the solution y(t) of the above differential equation as ∆t goes
to zero. Once again, it’s a matter of measuring a distance between functions.
What is the correct distance to use? How can one prove that our numerical
scheme converges? Functional analysis provides tools to answer to these ques-
tions.

The previous example provides another interpretation of the expression
infinite dimensional. The vector (y0, y1, . . . , yn) in the example is n + 1 dimen-
sional. The dimension depends on the size of the time-step ∆t through the
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formula (∆t)n = T. The smaller ∆t, the larger n, Such a variability of the
dimension is important in order to consider smaller and smaller time-steps
while approaching the solution to our numerical problem. A vector with finite
entries but with no constraint on the number of entries can be considered as well as
an infinite dimensional vector. More precisely, we can think of y as a vector with
infinite entries (y0, y1, . . . , yN−1, yN , 0, 0, . . . , 0, . . .).

Why has functional analysis become so fashionable? Despite the above ex-
amples, it is often the case that functional analysis leads to a result in cases
in which other traditional techniques do as well. The typical example is op-
timisation. A very abstract functional analytical framework may provide a
non-constructive existence of a minimiser for a given optimisation problem,
but one may directly recover a set of Euler-Lagrange equations as optimality
conditions, thus having to solve just a set of differential equations.

However, the strength and appeal of functional analysis is that it is a con-
venient way of examining the mathematical behavior of various structures.
More precisely, functional analysis clarifies, rigorises, and unifies the underly-
ing concepts.

It clarifies because - as already said - functional analysis is a generalisa-
tion and combination of linear algebra, analysis, and geometry (yes, there is
a bit of geometry too when you measure distances: orthogonal projections,
hyper-planes, etc.), expressed in a simple mathematical notation which allows
these three aspects of the problem to be easily seen. It rigorises, because it
has the back up of a vast mathematical machinery which subsumes many
of the classical results on differential equations, numerical methods, calculus
of variations, and applied mathematical techniques. It unifies, because often
the simple notation does away with many of the complicating details leaving
the essential standing out clearly, so that problems from many different fields
have the same functional analytical symbolism.

This course has several prerequisites. We try to list them here: set theory,
relations and functions, partially ordered sets, the set of real numbers and its
properties, supremum and infimum, topology of the real line, matrices, vec-
tors, linear spaces, linear independence, linear systems and their resolution,
Euclidean geometry, diagonalisation of matrices, eigenvectors, eigenvalues,
topology of Euclidean spaces, real functions of one and more variables, real
sequences, limits, derivatives, partial derivatives, real sequences and their lim-
its, lim sup and lim inf, infinite sums and their convergence, basics of ordinary
differential equations, Riemann’s integration theory.

The present lecture notes are adapted from many references which include
[3] as the main reference plus some hand-written notes by the lecturer.
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1 Metrics, norms, and topologies

We are all familiar with the geometrical properties of ordinary, three dimen-
sional Euclidean spaces. A persistent theme in mathematics is the grouping
of various kinds of objects into abstract spaces. This grouping enables us to
extend our intuition of the relationship between points in Euclidean space to
the relationship between more general kinds of objects, leading to a clearer
and deeper understanding of those objects.

The simplest setting for the study of many problems in analysis is that
of a metric space. A metric space is a set of points with a suitable notion
of the distance between points. We can use the distance metric, or distance
function, to define the fundamental concepts of analysis, such as convergence,
continuity, and compactness.

In general, a metric space does not have any kind of algebraic structure de-
fined on it. In many applications, however, the metric space is a linear space,
with a metric derived from a norm that gives the ‘length’ of a vector. Such
spaces are called normed linear spaces. For example, the n-dimensional Eu-
clidean space is a normed linear space (after the choice of an arbitrary point
as the origin). A central topic of this course is to study infinite-dimensional
normed linear spaces, including function spaces in which a single point rep-
resents a function. As we will see, the geometrical intuition derived from
finite-dimensional Euclidean spaces remains essential, although completely
new features arise in the case of infinite-dimensional spaces.

In this section we define and study metric spaces and normed linear spaces.
Along the way, we review a number of definitions and results from real anal-
ysis.

1.1 Metrics and norms

Let X be an arbitrary nonempty set.

1.1 definition. A metric, or distance (or distance function), on X is a function

d : X× X → R

with the following properties

(a) d(x, y) ≥ 0 for all x, y ∈ X, and d(x, y) = 0 if and only if x = y;

(b) d(x, y) = d(y, x) for all x, y ∈ X;

(c) d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈ X.

A metric space is a pair (X, d) where X is a set and d is a metric on X. The
elements of X are called points.

When the metric d is understood from the context, we denote a metric
space simply by the set X. In words, the definition states that:

(a) distances are nonnegative, and the only point at zero distance from x is
x itself;

11



1. Metrics, norms, and topologies

(b) the distance is a symmetric function;

(c) distances satisfy the triangle inequality.

For points in the Euclidean space, the triangle inequality states that the length
of one side of a triangle is less than the sum of the lengths of the other two
sides.

1.2 example. The set of real numbers R with the distance function d(x, y) =
|x − y| is a metric space. The set of complex numbers C with the distance
function d(z, w) = |z− w| is also a metric space.

1.3 example. Let X be the set of people of the same generation with a com-
mon ancestor, for example, al the grandchildren of a grandmother. We define
the distance d(x, y) between two individuals x, y ∈ X as the number of gen-
erations one has to go back in order to find the first common ancestor. For
example, the distance between two sisters is one. It is easy to check that d is a
metric.

1.4 example (Metric subspaces). Suppose (X, d) is any metric space and Y
is a subset of X. We define the distance between points of Y by restricting
the metric d to Y.1 The resulting metric space (Y, d|Y), or (Y, d) for short, is
called a metric subspace of (X, d). For example, (R, | · |) is a metric subspace
of (C, | · |), and the space of rational numbers (Q, | · |) is a metric subspace of
(R, | · |).

1.5 example (Cartesian products). If X and Y are sets, then the Cartesian prod-
uct X × Y is the set of ordered pairs (x, y) with x ∈ X and y ∈ Y. If dX and
dY are metrics on X and Y respectively, then we may define a metric dX×Y on
X×Y by

dX×Y((x1, y1), (x2, y2)) = dX(x1, x2) + dY(y1, y2)

for all x1, x2 ∈ X and y1, y2 ∈ Y.

1.6 exercise. Let (X, d) be a metric space. Prove that, for all x, y, z ∈ X, one
has

|d(x, y)− d(x, z)| ≤ d(y, z)

(Hint: use the triangle inequality).

As mentioned above, metric spaces do not need an underlying algebraic
structure to be well defined, see for instance the Example 1.3. When talking
about ‘algebraic structure’, we essentially mean a structure of linear space.
In the next definition, we shall refer to R and C as ‘scalar fields’, i.e. sets
equipped with a sum operation + and a product operation · with certain

1The restriction of a function f : A→ B to a subset C ⊂ A is the function f |C → B defined by
fC(x) = f (x) for all x ∈ C ⊂ A. In this case, the distance function is restricted to Y×Y ⊂ X× X.
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1.1. Metrics and norms

elementary properties satisfied2 such as associativity, commutativity, existence
of additive and multiplicative identity elements (zero and one respectively),
existence of additive inverses and multiplicative inverses, and distributivity of
multiplication over addition. These properties are considered as elementary.
When referring to R or C as a scalar field, we shall often refer to their elements
as scalar.

1.7 definition. A linear space (or vector space) X over the scalar field R (or C)
is a set, the elements of which are called vectors, on which the following two
operations are defined

• Sum between vectors: X× X 3 (x, y) 7→ x + y ∈ X,3

• Scalar multiplication: R× X or (C× X) 3 (λ, x) 7→ λx ∈ X,

with the following properties:

1. For all x, y, z ∈ X,

• x + y = y + x

• x + (y + z) = (x + y) + z,

2. there exists 0 ∈ X such that 0 + x = x for all x ∈ X,

3. for all x ∈ X there is a unique −x ∈ X such that x + (−x) = 0,

4. for all x, y ∈ X and λ, µ ∈ R (or C),

• 1 x = x

• (λ + µ)x = λx + µx,

• λ(µx) = (λµ)x,

• λ(x + y) = λx + λy.

A norm on an linear space is a function that provides a “length” to a vector.

1.8 definition. A norm on a linear space X is a function ‖ · ‖ : X → R with
the following properties:

(a) ‖x‖ ≥ 0 for all x ∈ X (nonnegativity);

(b) ‖λx‖ = |λ|‖x‖ for all x ∈ X and λ ∈ R (or C) (homogeneity);

(c) ‖x + y‖ ≤ ‖x‖+ ‖y‖, for all x, y ∈ X (triangle inequality);

(d) ‖x‖ = 0 implies that x = 0 (strict positivity).

A normed linear space (X, ‖ · ‖) is a linear space X equipped with a norm ‖ · ‖.
2https://en.wikipedia.org/wiki/Field_(mathematics)
3By abuse of notation, the same symbol + is used to denote both the sum in the scalar field

(sum of two real or complex numbers) and the sum in the linear space (sum of two vectors).
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1. Metrics, norms, and topologies

Depending on whether X in the above definition is a linear space on the
scalar field R or C, we shall call X a real normed linear space or complex
normed linear space respectively.

1.9 exercise. Some textbooks state the above property (d) as follows:

(d’) ‖x‖ = 0 if and only if x = 0.

Clearly, (d’) implies (d). In fact, (d) and (d’) are equivalent once the previous
properties (a)-(b)-(c) are assumed. Why?

Clearly, metric spaces and normed spaces do have something in common.
The first thing that catches our attention is that a normed space structure
needs a linear space structure underneath, whereas a metric space structure
can, in principle, be defined on an set which is not a linear space. What if we
restrict our survey to linear spaces? Actually, we can prove, in some sense,
that a normed space is also a metric space.

1.10 exercise (Normed spaces are metric spaces). Prove that a normed linear
space (X, ‖ · ‖) is a metric space with the metric

d(x, y) = ‖x− y‖. (7)

The distance d in the Exercise 1.10 is called induced distance.

For future use, we recall the concept of convex subset. A subset C of a linear
space X is said to be convex if

tx + (1− t)y ∈ C

for all x, y ∈ C and for all t ∈ [0, 1], meaning that the line segment joining two
vectors in C lies entirely in C.

1.11 exercise. Prove that the closed unit ball

{x ∈ X : ‖x‖ ≤ 1}

in a linear normed space X is a convex set.

1.12 example. The set of real numbers R with the absolute value norm ‖x‖ =
|x| is a one-dimensional real normed linear space. More generally, Rn, where
n = 1, 2, 3, . . ., is an n-dimensional linear space. We define the Euclidean norm
of a point x = (x1, . . . , xn) ∈ Rn by

‖x‖ =
√

x2
1 + x2

2 + . . . + x2
n,

and call Rn equipped with the Euclidean norm n-dimensional Euclidean space.
As seen in the introductory Section, we can also define other norms on Rn.
For example, the 1-norm is given by

‖x‖1 = |x1|+ |x2|+ . . . + |xn|.

14



1.1. Metrics and norms

The maximum norm, or ∞-norm, is given by

‖x‖∞ = max{|x1|, |x2|, . . . , |xn|}.

The student is invited to prove that the three above (Euclidean norm, 1-norm,
and ∞-norm) are actual norms according to our Definition 1.8.

1.13 exercise. In the case n = 2, draw the sets

• {x ∈ R2 : ‖x‖ ≤ 1},

• {x ∈ R2 : ‖x‖1 ≤ 1},

• {x ∈ R2 : ‖x‖∞ ≤ 1},

on the Cartesian coordinate system.

1.14 example. A linear subspace of a linear space, or simply a subspace when
it is clear we are talking about linear spaces, is a subset that is itself a linear
space. More precisely, A subset M of a linear space X is a subspace if and only
if λx+µy ∈ M for all λ, µ ∈ R (or C) and all x, y ∈ M. A subspace of a normed
linear space is a normed linear space with norm given by the restriction of the
norm on X to M. Note that every subset of a normed linear space X can be
therefore seen as a metric sub-space of X (in the induced distance), but not all
subsets of X are linear subspaces of X. For example, a bounded line segment
of the 2-dimensional Euclidean plane is a metric subspace of R2, but not a
linear subspace.

We will see later on (but we already mention that in section ) that all norms
on a finite-dimensional linear space lead to the same notion of convergence, so
often it is not important which norm we use. Different norms on an infinite-
dimensional linear space, such as a function space, may lead to completely
different notions of convergence, so the specification of a norm is crucial in
this case. We will always regard a normed linear space as a metric space with
the metric defined in (7), unless we explicitly state otherwise. Nevertheless,
this equation is not the only way to define a metric on a normed linear space,
see the Exercises at the end of this Section.

Let us get back to the question raised before Example 1.10. What is the
relation between metric spaces and normed linear spaces? So far we have
proven that essentially every normed linear space is a metric space. The op-
posite question raises naturally: suppose X is a linear space which is also a
metric space, with metric d; is the distance d induced by any kind of norm? If so,
every linear space which is also a metric space would be a normed space. The
answer is provided in the next example.

1.15 example. On a real vector space X, consider the metric

d(x, y) =

{
0 if x = y
1 if x 6= y

.
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1. Metrics, norms, and topologies

We claim that d cannot induce a norm. By contradiction, assume there exists
a norm ‖ · ‖ on X such that ‖x− y‖ = d(x, y). Now, let x ∈ X \ {0} (0 being
the identity element in X), let λ ∈ R \ {0}. Then, the homogeneity property
of norms implies 1 = d(λx, 0) = ‖λx‖ = |λ|‖x‖ = |λ|d(x, 0) = |λ|, and this is
a contradiction if |λ| 6= 1.

1.2 Convergence

The goal of this subsection is to introduce the concept of convergent sequence
in a metric space.

A sequence (xn) in a metric space (X, d) is a map N 3 n 7→ xn ∈ X which
associates a point xn ∈ X with each natural number n ∈N.

1.16 definition. A sequence (xn) in a metric space (X, d) converges to x ∈ X
if for every ε > 0 there is an N ∈ N such that d(xn, x) < ε for all n ≥ N.
The point x is called limit of the sequence. The sequence is Cauchy if for every
ε > 0 there is an N ∈N such that d(xm, xn) < ε for all m, n ≥ N.

We use the notations

lim
n→+∞

xn = x , xn → x

to denote that xn converges to x.

1.17 remark. The limit of a convergent sequence in a metric space is unique.
To see this, assume xn → x and xn → y as n → +∞. Assume x 6= y. Then,
point (a) in the Definition 1.1 implies d(x, y) > 0. Let d(x, y) = δ > 0. Since
xn → x, there is an N ∈N such that d(x, xn) < δ/3 for all n ≥ N. Hence, due
to the triangle inequality, for n ≥ N one has

δ = d(x, y) ≤ d(x, xn) + d(xn, y) <
δ

3
+ d(xn, y),

which implies d(xn, y) > 2δ
3 for all n ≥ N, and that contradicts xn → y.

In the introductory section we emphasized the fact that two separate con-
cepts of distance give rise to two separate notions of convergence. We touched
in particular the issue of convergence in a finite dimensional normed space,
and outlined that no matter what norm we use in a finite dimensional space,
this won’t affect the set of convergent sequences. In a generic metric space
(not necessarily normed) the fact that the notion of convergence depends quite
heavily on the distance is easily seen even in very simple examples.

1.18 example. Let X = R and consider the following two distances on X:

d1(x, y) = |x− y|

d2(x, y) =

{
1 if x 6= y
0 if x = y.

16



1.2. Convergence

There are sequences which converge in the metric space (X, d1) but not in
(X, d2), see also the Exercises. As example, take xn = 1/n. Clearly xn → 0
in d1, but this is not true in the distance d2. Indeed, let ε = 1/2. To have
convergence we would need to find a N ∈ N such that d2(1/n, 0) < 1/2 for
all n ≥ N. But the only possibility to have d2(1/n, 0) < 1/2 is that 1/n = 0,
which never happens even if n is very large.

1.19 exercise. Prove that every convergent sequence in a metric space is a
Cauchy sequence.

The reverse property, namely that every Cauchy sequence converges, sin-
gles out a particularly useful class of metric spaces, called complete metric
spaces.

1.20 definition. A metric space (X, d) is complete if every Cauchy sequence in
X converges to a limit in X. A subset Y of X is complete if the metric subspace
(Y, d|Y) is complete. A normed linear space that is complete with respect to
the induced metric is called a Banach space.

Recall the set of rational numbers Q, which can be seen as a linear sub-
space of R, so it is by itself a linear space. Hence, by seeing R as a normed
linear space equipped with the usual absolute value norm, Q can be seen as a
normed linear space. As such, Q is not complete, since a sequence of rational
numbers which converges in R to an irrational number (such as

√
2 or π) is a

Cauchy sequence in Q, but does not have a limit in Q, see the Exercises at the
end of this Chapter for a specific example.

1.21 exercise. Prove that the normed linear space Rn is a Banach space when
equipped with the norms ‖ · ‖, ‖ · ‖1, and ‖ · ‖∞ considered in the Example
1.12.

Infinite series (or infinite sums) do not make sense in a general metric
space, because we cannot add points together in a general metric space. We
can, however, consider series in a normed linear space X. Just as for real or
complex numbers, if (xn) is a sequence in X, then the series ∑+∞

n=1 xn converges
to s ∈ X if the sequence of partial sums (sn), sn = ∑n

k=1 xk, converges to s.
The concepts of lim sup and lim inf of a sequence of real numbers are

required as prerequisites of this course. We invite the students to review them
in a proper basic real analysis textbook. The next property will be useful in
the sequel.

1.22 example. If {xn,α ∈ R : n ∈ N, α ∈ A} is a set of real numbers indexed
by the natural numbers N and an arbitrary set A, then

sup
α∈A

[
lim inf
n→+∞

xn,α

]
≤ lim inf

n→+∞

[
sup
α∈A

xn,α

]
.

Having a concept of distance in our hands, we can introduce the concept
of bounded set even though a metric space is not necessarily equipped with

17



1. Metrics, norms, and topologies

the structure of totally ordered set. Suppose that A is a nonempty subset of a
metric space (X, d). We define the diameter of A as

diam A = sup{d(x, y) : x, y ∈ A}.

A subset A of X is bounded if diam A is finite. It follows that A is bounded if
and only if there is an M ∈ R and an x0 ∈ X such that d(x0, x) ≤ M for all
x ∈ A (see the Exercises at the end of this Chapter for the proof). The distance
d(x, A) of a point x from the set A is defined by

d(x, A) = inf{d(x, y) : y ∈ A}.

The statement d(x, A) = 0 does not imply necessarily that x ∈ A.
Given two metric spaces (X, dX) and (Y, dY), we say that a function f :

X → Y is bounded if its range f (X) is bounded. For example, a real-valued
function f : X → R is bounded if there is a finite number M such that | f (x)| ≤
M for all x ∈ X. We say that f : X → R is bounded from above if there is an
M ∈ R such that f (x) ≤ M for all x ∈ X, and bounded from below if there is
an M ∈ R such that f (x) ≥ M for all x ∈ X.

1.3 Continuity

Everyone is familiar with the concept of continuous function f : R → R.
The definition of continuity for functions between metric spaces is an obvious
generalisation of that. Let (X, dX) and (Y, dY) be two metric spaces.

1.23 definition. A function f : X → Y is continuous at x0 ∈ X if for every
ε > 0 there is a δ > 0 such that dX(x, x0) < δ implies dY( f (x), f (x0)) < ε. The
function f is continuous on X if it is continuous at every point x ∈ X.

If f is not continuous at x, then we say that f is discontinuous at x. There
are continuous functions on any metric space. For example, every constant
function is continuous.

1.24 example (Distance function). Let a ∈ X, and define f : X → R by
f (x) = d(x, a). Then f is continuous on X. Indeed, let x0 ∈ X and ε > 0.
As a consequence of the triangle inequality (see the exercise 1.6), we have

| f (x)− f (x0)| = |d(x, a)− d(x0, a)| ≤ d(x, x0).

Therefore, choosing δ = ε gives | f (x)− f (x0)| < ε provided d(x, x0) < δ.

We can also define continuity in terms of limits. If f : X → Y, we say that
f (x)→ y0 as x → x0, or

lim
x→x0

f (x) = y0,

if for every ε > 0 there is a δ > 0 such that 0 < dX(x, x0) < δ implies that
dY( f (x), y0) < ε. Similarly to the concept of limit for real functions studied in
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1.3. Continuity

first year’s calculus, the above definition does not prescribe any requirement
on the value of f on the point x0. In fact, such a concept can be extended to
a point x0 which is the limit of a sequence on which the function f is well
defined. More precisely, let f : D → Y, with D ⊂ X. Let x0 ∈ X such that x0 is
the limit of a sequence (yn) ⊂ D. We say that f has limit y0 at the point x0 if
for every ε > 0 there is a δ > 0 such that 0 < dX(x, x0) < δ and x ∈ D implies
that dY( f (x), y0) < ε. A function f : X → Y is continuous at x0 ∈ X if

lim
x→x0

f (x) = f (x0),

meaning that the limit of f as x → x0 exists and is equal to f (x0).
If f : X → Y and E is a subset of X, then we say that f is continuous on

E if it is continuous at every point x ∈ E. This property is, in general, not
equivalent to the continuity of the restriction fE of f on E, as shown in the
next example.

1.25 example. Let f : R→ R defined by

f (x) =

{
1 if x ∈ Q,
0 if x 6∈ Q.

The function f is discontinuous at every point of R, but f |Q : Q → R is the
constant function f |Q(x) = 1, so f |Q is continuous on Q.

A subtle, but important, strengthening of continuity is uniform continuity.

1.26 definition. A function f : X → Y is uniformly continuous on X if for every
ε > 0 there is a δ > 0 such that dX(x, y) < δ implies dY( f (x), f (y)) < ε for all
x, y ∈ X.

The crucial difference between definition 1.23 and definition 1.26 is that
the value of δ does not depend on the point x ∈ X in the latter, so that
f (y) gets closer to f (x) at a uniform rate as y gets closed to x. For example,
r : (0, 1)→ R defined by r(x) = 1/x is continuous on (0, 1) but not uniformly.
In the following, we will denote all metrics by d when it is clear from the
context which metric is meant.

There is a useful equivalent way to characterise continuous functions on
metric spaces in terms of sequences.

1.27 definition. A function f : X → Y is sequentially continuous at x ∈ X if
for every sequence (xn)n in X that converges to x, the sequence ( f (xn))n in Y
converges to f (x) ∈ Y.

1.28 proposition. Let X, Y be metric spaces. A function f : X → Y is continuous
at x ∈ X if and only if it is sequentially continuous at x.

Proof. First, we show that if f is continuous, then it is sequentially continu-
ous. Suppose that f is continuous at x, and let xn → x. Let ε > 0 be given.
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1. Metrics, norms, and topologies

By the continuity of f , we can choose δ > 0 such that d(xn, x) < δ implies
d( f (xn), f (x)) < ε. By the convergence or (xn)n, we can choose N so that
n ≥ N implies d(x, xn) < δ. Therefore, n ≥ N implies d( f (xn), f (x)) < ε, and
this means that f (xn)→ f (xn).

To prove the converse, we prove that if f is discontinuous, then it is not
sequentially continuous. If f is discontinuous at x, then there is an ε > 0
such that for every n ∈ N there exists xn ∈ X with d(xn, x) < 1/n and
d( f (xn), f (x)) ≥ ε. The sequence (xn) constructed converges to x but ( f (xn))
does not converge to f (x). Hence, f is not sequentially continuous.

Similarly to what we showed for convergence of sequences, the notion of
continuity for a function pretty much depends on the distance one is consid-
ering on the metric space.

1.29 example. Let X = R, and let d1 and d2 be as in the example 1.18. Con-
sider the function f : (X, d1) → (X, d1) given by f (x) = x. This function
is continuous, as we all know (a straight line on the real numbers equipped
with the classical Euclidean distance). Let us now consider the same function
between (X, d1) to (X, d2). In order to have f continuous, every converging se-
quence in (X, d1) should be mapped via f to converging sequence in (X, d2).
But the only converging sequences with respect to the d2 distance are those
which are eventually constant. So, take the sequence xn = 1/n converging
to 0 in d1. Its image is f (xn) = xn, which does not converge to 0 in d2. So,
f : (X, d1)→ (X, d2) is not continuous.

There are two kinds of ‘half-continuous’ real-valued functions, defined as
follows.

1.30 definition. A function f : X → R is upper semicontinuous on X if for all
x ∈ X and every sequence xn → x, we have

lim sup
n→+∞

f (xn) ≤ f (x).

A function f : X → R is lower semicontinuous on X if for all x ∈ X and every
sequence xn → x, we have

lim inf
n→+∞

f (xn) ≥ f (x).

1.31 example. Let X = R equipped with the usual distance d(x, y) = |x− y|.
Consider the function

f (x) =

{
0 if x < 0
1 if x ≥ 0.

Prove that f is upper semi-continuous at x = 0 but not lower semi-continuous
at x = 0.

1.32 exercise. Prove that a function f : X → R is continuous if and only if it
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1.4. Topological spaces

is upper and lower semicontinuous.

1.4 Topological spaces

The notion of topological space is defined by means of rather simple and
abstract axioms. It is very useful as an ‘umbrella’ concept which allows to use
the geometric language and the geometric way of thinking in a broad variety
of vastly different situations, which include metric spaces as a special case.

1.33 definition. A topological space is a pair (X, τ), where X is a set and a
τ ⊂ P(X) is a family of subsets of X called the topology of X, whose elements
are called open sets, such that

(i) ∅, X ∈ τ (the empty set and the whole set are open sets).

(ii) If {Oα}α∈A ⊂ τ is an arbitrary family of open sets, then
⋃

α∈A Oα ∈ τ
(the union of an arbitrary family of open sets is open.

(iii) If {Oj}N
j=1 ⊂ τ, then O1 ∩ . . . ∩ON ∈ τ (the intersection of finite number

of open sets is open).

If x ∈ X, then an open set containing x is called an (open) neighborhood of x.
The complements of open sets are called closed sets.

We will often omit the topology τ, and refer to X as a topological space
assuming that the topology has been described.

1.34 example. Let X = R and let us define as open sets O ⊂ R all subsets of
R with the property that, for all x ∈ O, there exists ε > 0 such that the interval
(x− ε, x + ε) ⊂ O. Then, the above family of open sets defines a topology on
R (exercise!).

1.35 example. If in the set of real numbers R we declare open (besides the
empty set and R) all the half-lines {x ∈ R : x ≥ a}, a ∈ R, then we do
not obtain a topological space: the first and third axiom of topological spaces
hold, but the second one does not (e.g. for the collection of all half lines with
positive endpoints).

1.36 example. Let X be a set. The discrete topology on X is τ = P(X). Check
that τ is a topology. The indiscrete topology, or trivial topology on X is τ =
{∅, X}. Check that the trivial topology is also a topology.

1.37 exercise. Let {Cα}α∈A be an arbitrary family of closed sets in a topolog-
ical space X. Prove that the intersection

⋂
α∈A Cα is still a closed set.

1.38 definition. The closure A of a set A ⊂ X is the smallest closed set con-
taining A, that is

A =
⋂
{C : A ⊂ C , C closed set} .
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A set A ⊂ X is called dense in X if A = X. A set A ⊂ X is called nowhere dense
if X \ A is dense. A point x ∈ X is called an accumulation point (or a limit point)
of a set A ⊂ X if every neighborhood of x contains infinitely many points of
A. A point x ∈ A is called an interior point of A if there exists a neighborhood
of x entirely contained in A. The set of all interior points of A is called the
interior of A, and is denoted by A◦.

1.39 exercise. Prove that a set A is open if and only if A = A◦. Prove that a
set A is closed if and only if A = A.

1.40 definition. A topological space X is said to be separable if there exists a
countable, dense subset S ⊂ X.

1.41 exercise. Show that R with the usual Euclidean topology is a separable
space. Show that R endowed with the discrete topology (every set is open) is
not separable.

1.42 definition. A point x ∈ X is called a boundary point of a set A ⊂ X if it
is neither an interior point of A nor it is an interior point of Ac = X \ A. The
set of boundary points of A is called the boundary of A and is denoted by ∂A.

1.43 exercise. For very set A ⊂ X, prove that A = A ∪ ∂A. Consequently,
prove that a set C ⊂ X is closed if and only if C contains its boundary.

We now introduce the concept of convergent sequence in a topological
space.

1.44 definition. A sequence {xn}n∈N ⊂ X is said to converge to x ∈ X if for
every open set O ⊂ X containing x there exists N ∈N such that {xn}n≥N ⊂ O.
Any such point x is said a limit for the sequence {xn}n.

1.45 exercise.

• Let X = R with the discrete topology (all sets are open). Prove that any
subset S ⊂ R has neither accumulation nor boundary points, prove that
the closure (as well as the interior) of every set S is the S itself, prove
that the sequence 1/n does not converge to 0.

• Let X = R with the trivial topology (only the empty set and R are
open). Prove that every sequence in R is convergent to any arbitrary
point x ∈ R.

The latter example above shows in particular that limits may be not unique
in a general topological space.

We now introduce the concept of continuity for a function between two
topological spaces.

The topological definition of continuity is simpler and more natural than
the ε, δ definition for metric spaces.

1.46 definition. Let (X, τ), (Y, σ) be topological spaces. A map f : X → Y
is said to be continuous if O ∈ σ implies f−1(O) ∈ τ (pre-images of open sets
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are open). f is an open map if O ∈ τ implies f (O) ∈ σ (images of open sets are
open). f is continuous at a point x ∈ X if for any neighborhood A of f (x) in
Y, the pre-image f−1(A) contains a neighborhood of x in X.

1.47 exercise. Prove that a function f is continuous if and only if it is contin-
uous at every point.

1.5 The topology of metric spaces

The concepts of convergence of a sequence in a metric space (introduced in
Definition 1.16) and of continuous function between two metric spaces (intro-
duced in Definition 1.23) can be formulated without the use of topologies and
open sets. On the other hand, once the open sets are known, these two con-
cepts are very naturally defined in a topological space, as seen in Definitions
1.44 and 1.46. Hence, in order to unify those concepts, we need to provide a
standard way to equip all metric spaces with a topology.

Let (X, d) be a metric space. The open ball, Br(a), with radius r > 0 and
center a ∈ X is the set

Br(a) .
= {x ∈ X | d(x, a) < r}.

The closed ball Br(a), is the set

Br(a) .
= {x ∈ X | d(x, a) ≤ r}.

1.48 exercise. Let X = R and let d1 and d2 the two distances on R defined in
the example 1.18. Find B1/2(0).

1.49 definition. A subset G of a metric space X is open if for every x ∈ G
there is an r > 0 such that Br(x) is contained in G.

1.50 exercise. Let X be a metric space. Prove that

• the empty set ∅ and the whole space X are open,

• a finite intersection of open sets is open,

• an arbitrary union of open sets is open.

We prove here the second statement. Let A1, . . . , An be open sets. Let A =
A1 ∩ . . . ∩ An. In order to prove that A is open we must provide, for a given
x ∈ A, a positive ε such that Bε(x) ⊂ A. Now, x ∈ A means x ∈ Ai for all
i = 1, . . . , n, and since each of those sets is an open set, there is an εi > 0 such
that Bεi (x) ⊂ Ai. Let

ε = min {ε1, . . . , εn} .

Clearly, Bε(x) ⊂ Bεi (x) ⊂ Ai for all i, and therefore Bε(x) ⊂ A.

The example below clarifies that the above reasoning may fail in case we
are dealing with infinitely many open sets.
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1.51 example. The interval (−1/n, 1) is open in R for every n ∈ N, but the
intersection

+∞⋂
n=1

In = [0, 1)

is not open (please, spend some time in proving the above identity as an
exercise in case you are not convinced about it). Thus, an infinite intersection
of open sets need not be open.

As a consequence of the above exercise 1.50, the family of open sets in a
metric space X according to Definition 1.49 is a topology. With such an identi-
fication, all concepts we defined for topological spaces can be formulated for
metric spaces. More precisely, every metric space can be considered as a topological
space, the topology being the one defined in Definition 1.49. As a consequence, we
can define closed sets in a metric space as all sets of the form X \ G with G
open.

First of all, we need to check that the concepts of convergence and conti-
nuity we provided for metric and topological spaces independently coincide
on metric spaces.

1.52 exercise. Let xn be a sequence in a metric space and let x ∈ X. Prove that
xn converges to x in the sense of Definition 1.16 if and only if xn converges to
x in the sense of Definition 1.44, with X a topological spaces in the sense of
Definition 1.49.

1.53 exercise. Let X and Y be two topological spaces and let f : X → Y be a
function. Prove that f is continuous in the sense of definition 1.46 if and only
if it is continuous in the sense of Definition 1.23.

Closed sets in a metric spaces can be given an alternative, sequential char-
acterisation as sets that contain their limit points.

1.54 proposition. A subset F of a metric space is closed if and only if every conver-
gent sequence in X with elements in F converges to a limit in F. That is, if xn → x
and xn ∈ F for all n, then x ∈ F.

Proof. Assume first that F is closed, and let xn ∈ F with xn → x. Assume by
contradiction that x ∈ Fc. Since F is closed, then Fc is open. Hence, there is an
open ball Br(x) contained in Fc. This implies that no elements of the sequence
xn are contained in Br(x), and this contradicts the fact that xn converges to x.
Indeed, for ε = r there is no n ∈N such that d(xn, x) < ε.

Assume now that every convergent sequence in X with elements in F con-
verges to a limit in F. We want to prove that F is closed. Assume by contra-
diction that F is not closed. This means that Fc is not open. Therefore, there
exists x ∈ Fc such that every open ball Bε(x) intersects F. In particular, for all
n ∈N there is xn ∈ F such that d(x, xn) < 1/n. Clearly xn converges to x, but
x does not belong to F, which contradicts the starting assumption.

24



1.5. The topology of metric spaces

1.55 exercise. Prove that a subset of a complete metric space is complete if
and only if it is closed.

The closure of a set A can be also obtained by adding to A all limits of
convergent sequences of elements of A. That is,

A = {x ∈ X : there is a sequence (an) ⊂ A such that an → x}. (8)

It follows from (8) that A is a dense subset of the metric space X if and only
if for every x ∈ X there is a sequence (an) in A such that an → x. Thus, every
point in X can be approximated arbitrarily closely by points in the dense set
A. We will encounter many dense sets later on.

This property has repercussions also on the concept of separable topologi-
cal space that we introduced in Definition 1.40. A metric space is said to be
separable if it is separable as a topological space, with the usual topology
introduced at the beginning of this subsection.

For example, R with the usual standard metric is separable because Q is a
countable dense subset. To see this, it suffices to write an arbitrary real number
in decimal form and set zero on all the decimal digits from the (n + 1)-th
onward. This defines an approximating sequence in Q.

1.56 example. The metric considered on a given set is crucial to determine
whether or not a subset is dense. For example, consider R with the discrete
distance

d(x, y) =

{
1 if x 6= y
0 if x = y.

It is a trivial exercise to check that d is a distance. Now,

a sequence (xn) in R converges to x in the discrete distance

if and only if there exists N ∈N such that xn = x for all n ≥ N. (9)

To see this, we apply the definition of convergence with ε = 1/2, that is a
sequence xn converges to x if there is N ∈ N such that d(x, xn) < 1/2 for
all n ≥ N. But the definition of discrete distance implies that d(x, xn) can
only be less than 1/2 if it is zero, that is if xn = x. This proves (9). Now, it is
quite clear that Q cannot be dense in R with such a distance. Indeed, the only
subset of R which is dense in R equipped with the discrete distance is R itself.
If A ⊂ R with A 6= R, let x ∈ R \ A, assuming by contradiction that (xn) is a
sequence in A converging to x, the fact (9) implies xn = x for all n larger than
some N ∈ N, but this is impossible since x is not in A and xn is in A. As a
consequence, R is not separable when equipped with the discrete distance.

According to Definition 1.49, a set U in a metric space X is a neighborhood
of x if U contains a ball Br(x) centered at x for some r > 0. Definition 1.16

for the convergence of a sequence can therefore be rephrased in the following
way. A sequence (xn) converges to x if for every neighborhood U of x there is
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an N ∈N such that xn ∈ U for all n ≥ N.

1.6 Compactness

Compactness is one of the most important concepts in analysis. A simple and
useful way to define compact sets in a metric space is by means of sequences.
We first recall the concept of subsequence of a sequence in a metric space.

1.57 definition. Let {xn}n∈N be a sequence in the metric space (X, d). A
subsequence {xnk}k∈N of {xn} is a sequence

N 3 k 7→ xnk

such that the map

N 3 k 7→ nk ∈N

is strictly increasing.

1.58 definition. A subset K of a metric space X is sequentially compact if every
sequence in K has a convergent subsequence whose limit belongs to K.

We can take K = X in this definition, so that a metric space X is sequen-
tially compact if every sequence in X has a convergent subsequence. A subset
K of (X, d) is sequentially compact if and only if the metric subspace (K, dK)
is sequentially compact.

1.59 example. The space of real numbers R is not sequentially compact. For
example, the sequence (xn) with xn = n has no convergent subsequence be-
cause |xn − xm| ≥ 1 for all m 6= n. The closed, bounded interval [0, 1] is
sequentially compact, as we prove below. The half-open interval (0, 1] is not
a sequentially compact subset of R, because the sequence (1/n) converges
to 0, and therefore has not subsequence with limit in (0, 1]. The limit does,
however, belong to [0, 1].

The full importance of compact sets will become clear only in the setting of
infinite-dimensional normed spaces. It is nevertheless interesting to start with
the finite-dimensional case. Compact subsets of Rn have a simple, explicit
characterisation.

1.60 theorem (Heine-Borel). A subset of Rn is sequentially compact if and only if
it is closed and bounded.

The fact that closed, bounded sets of Rn are sequentially compact is a
consequence of the following, well-known theorem, called Bolzano-Weierstrass
theorem.

1.61 theorem (Bolzano-Weierstrass). Every bounded sequence in Rn has a con-
vergent subsequence.
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Compactness may be rephrased in ways that do not involve sequences. In
fact, compactness is a topological property. We explain that in what follows.

Let A be a subset of a topological space X. We say that a collection {Gα :
α ∈ A} of subsets of X is a cover of A if its union contains A, meaning that

A ⊂
⋃

α∈A
Gα.

We stress that the number of sets in the cover is not required to be countable.
Indeed, the set of indexes A may have an arbitrary cardinality. If every Gα in
the cover is open, then we say that {Gα} is an open cover of A.

Let ε > 0. A subset {xα : α ∈ A} of X is called an ε-net of the subset A
if the family of open balls {Bε(xα) : α ∈ A} is an open cover of A. If the set
{xα} is finite, then we say that {xα} is a finite ε-net of A.

1.62 definition (Total boundedness). A subset of a metric space is totally
bounded if it has a finite ε-net for every ε > 0.

That is, a subset A of a metric space X is totally bounded if for every ε > 0
there is a finite set of points {x1, x2, . . . , xn} in X such that A ⊂ ⋃n

i=1 Bε(xi).
We say that a cover {Gα} of A has a finite subcover if there is a finite

subcollection of sets {Gα1 , . . . , Gαn} such that A ⊂ ⋃n
i=1 Gαi .

1.63 definition (Compactness). A subset K of a metric space X is compact if
every open cover of K has a finite subcover.

1.64 example. The space of real numbers R is not compact, since the open
cover {(n − 1, n + 1) : n ∈ Z} of R has no finite subcover. The half-open
interval (0, 1] is not compact, since the open cover {(1/2n, 2/n) : n ∈ N}
has no finite subcover. If this open cover is extended to an open cover of
[0, 1], then the extension must contain an open neighborhood of 0. This open
neighborhood, together with a finite number of sets from the previous cover
of (0, 1], is a finite subcover of [0, 1], which is not surprising, since [0, 1] is
indeed compact.

1.65 exercise. Prove that every totally bounded subset of a metric space is
bounded.

The next Theorem is of paramount importance in that it establishes three
equivalent formulations for compactness.

1.66 theorem. Let (X, d) be a metric space, let K ⊂ X. Then, the following three
conditions are equivalent:

• K is compact

• K is sequentially compact

• K is totally bounded and complete
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Proof. Assume K is compact. If K is not sequentially compact, there is a se-
quence {xn}n in K without convergent subsequences. Hence, every x ∈ K
is not the limit of a subsequence of {xn}n. Hence, for all x ∈ K there ex-
ists εx > 0 such that Bεx (x) contains at most finitely many elements of the
sequence {xn}n. Since K is compact, the open cover {Bεx (x) : x ∈ K} has a fi-
nite subcover Bε1(x1) , . . . , BεN (xN). As each of the (finitely) many balls above
contains only finitely element of the sequence, which is a contradiction.

Assume now K is sequentially compact. Given a Cauchy sequence in K,
compactness implies that there is a convergent subsequence. On the other
hand, all convergent subsequences must have the same limit because the se-
quence is Cauchy, and therefore the sequence converges. Hence, K is complete.
Assume now that K is not totally bounded. Then, there exists ε > 0 such that
no finite balls with radius ε > 0 cover K. In particular, given one ball Bε(x1)
with x1 ∈ K, there exists x2 ∈ K \ Bε(x1). Similarly, Bε(x1) and Bε(x2) do not
cover K, hence there exists x3 ∈ K \ (Bε(x1) ∪ Bε(x2)). Inductively, we build
a sequence xn ∈ K with the property xn ∈ K \ ⋃n−1

i=1 Bε(xi), which implies
d(xh, xk) ≥ ε whenever h 6= k. Consequently, such a sequence cannot have a
convergent subsequence, which contradict the assumption of K being sequen-
tially compact.

Assume now that K is totally bounded and complete. Assume K is not
compact. Hence, let {Uα : α ∈ A} be an open cover of K with no finite
subcover. Without restriction, we remove from {Uα} all sets with empty in-
tersection with K. Since K is totally bounded, there exists a finite 1/2-net
x1

1, . . . , x1
m1

in K. At least one of the balls B1/2(x1
j1
) for some j1 ∈ {1, . . . , m1} is

not covered by finitely many Uα’s, otherwise clearly {Uα} would have a finite
subcover. Hence, A1 := K ∩ B1/2(x1

j1
) is not covered by finitely many Uα’s.

Once again, since K is totally bounded, there exists a finite 1/4-net x2
1, . . . , x2

m2
in K. At least one of the balls B1/4(xj2) for some j2 ∈ {1, . . . , m2} is not cov-
ered by finitely many Uα’s and has a non empty intersection with A1, oth-
erwise, since the set of balls B1/4(xj) with non empty intersection with A1
covers A1, if they all could be covered by finitely many Uα’s then so would
A1, which is a contradiction. We set A2 := K ∩ B1/4(xj). Inductively, we con-
sider a 2−n-net xn

1 , . . . , xn
mn in K and obtain the existence of a point xn

jn which
is the center of open ball of radius 2−n with non empty intersection with
An−1 := B2−(n−1)(xn−1

jn−1
) ∩ K and such that B2−n(xn

jn) is not covered by finitely
many Uα’s. The sequence of centers {xn

jn}n is a Cauchy sequence in K. Indeed,

since B2−n(xn
jn) ∩ B2−(n−1)(xn−1

jn−1
) 6= ∅, we get

d(xn−1
jn−1

, xn
jn) ≤

1
2(n−1)

+
1
2n ≤

1
2(n−2)

,

which implies, for k < n,

d(xk
jk , xn

jn) ≤ 2−(n−2) + . . . + 2−(k−1) ≤ 2−(k−2) .

Since K is complete, xn
jn converges to some x ∈ K. Since K is covered by the

Uα’s, let α0 ∈ A be such that x ∈ Uα0 . As Uα0 is open, let ε > 0 be such that
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Bε(x) ⊂ Uα0 . By the convergence of the sequence, let n be such that

d(xn
jn , x) < ε/2

and, without restriction, such that 2−n < ε/2. This implies B2−n(xn
jn) ⊂ Bε(x) ⊂

Uα0 . Hence, one of the balls B2−n(xn
jn) we constructed is covered by one of the

sets of our given open cover, which is a contradiction.

1.67 lemma. Let (X, d) be a metric space and let A ⊂ X. Prove that A is dense if
and only if for all x ∈ X and for all ε > 0 there exists a ∈ A such that d(x, a) < ε.

Proof. Assume A is dense, and let x ∈ X. Assume by contradiction that there
exists ε > 0 such that no a ∈ X with d(x, a) < ε belongs to A. As a conse-
quence Bε(x) ⊂ X \ A, which implies that no sequences in A can converge to
x (otherwise infinitely many elements of the sequence would be in Bε(x), a
contradiction). Assume now that for all x ∈ X and for all ε > 0 there exists
a ∈ A such that d(x, a) < ε. We aim at proving that A is dense, that is A = X,
which is equivalent to X ⊂ A. Let x ∈ X. Due to our hypothesis, we choose
ε = 1/n and get the existence of a point an ∈ A with d(x, an) < 1/n. Hence,
an is a sequence in A that converges to x, which means that x ∈ A.

The above Lemma may be used to prove the following Lemma.

1.68 lemma. A sequentially compact metric space is separable.

Proof. By theorem 1.66, there is a finite (1/n)-net An of a sequentially compact
space K for every n ∈N. Let A =

⋃+∞
n=1 An is countable4 Moreover, A is dense

in K by using the exercise 1.67.

1.69 lemma. Every compact subset K of a metric space X is closed and bounded.

Proof. Using Proposition 1.54, let xn ∈ K be a sequence in K with limit x ∈ X.
K is compact, and hence sequentially compact, due to Theorem 1.66, therefore
x ∈ K as it is the limit of all subsequences. Let us now assume that K is not
bounded. Let x1 ∈ K. For every n ∈ N there exists x2 ∈ K with d(x1, x2) > 1
as K is not bounded. Then, for the same reason there exists x3 ∈ K such that
d(x1, x3) > 2. Inductively, there exists a sequence xn ∈ K such that d(x1, xn) >
n. Hence, the family of open balls Bn(xn) clearly covers K but they have no
finite subcover, which contradicts compactness.

In the future, we will abbreviate ‘sequentially compact’ to ‘compact’ when
referring to metric spaces. The following terminology if often convenient.

1.70 definition. A subset A of a metric space X is precompact if its closure in
X is compact.

The term relatively compact is frequently used instead of ‘precompact’. This
definition means that A is precompact if every sequence in A has a convergent

4Exercise: prove that the countable union of finite sets is countable.
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subsequence. The limit of the subsequence can be any point in X, and is not
required to belong to A. Since compact sets are closed, a set is compact if and
only if it is closed and precompact. A subset of a complete metric space is
precompact if and only if it is totally bounded.

1.71 example. A subset of Rn is precompact if and only if it is bounded.

Continuous functions on compact sets have several nice properties. From
proposition 1.28, continuous functions preserve the convergence of sequences.
It follows immediately from definition 1.58 that continuous functions preserve
compactness.

1.72 theorem. Let f : K → Y be continuous on K, where K is a compact metric
space and Y is any metric space. Then f (K) is compact in Y.

Since compact sets are bounded, continuous functions on a compact sets
are bounded. Moreover, continuous functions on compact sets are uniformly
continuous.

1.73 theorem. Let f : K → Y be a continuous function on a compact set K. Then f
is uniformly continuous.

Proof. Suppose that f is not uniformly continuous. Then there is an ε > 0 such
that for all δ > 0 there are x, y ∈ K with d(x, y) < δ and d( f (x), f (y)) ≥ ε.
Taking δ = 1/n for n ∈ N, we find that there are sequences (xn) and (yn) in
K such that

d(xn, yn) <
1
n

, d( f (xn), f (yn)) ≥ ε . (10)

Since K is compact there are convergent subsequences of (xn) and (yn) which,
for simplicity, we again denote by (xn) and (yn). From (10), the subsequences
converge to the same limit, but the sequences ( f (xn)) and ( f (yn)) do not
converge to the same limit. This contradicts the continuity of f .

We conclude this subsection with a Theorem that is of paramount impor-
tance in topology and analysis.

1.7 Maxima and minima

As highlighted in fact 0.7 and example 0.8, maximum and minimum problems
are of central importance in applications. The mathematical formulation of
these problems is the maximisation or minimisation of a real-valued function
f on a state space X. Each point of the state space, which is often a metric
space, represents a possible state of the system. The existence of a maximising,
or minimising, point of f in X may not be at all clear; indeed, such a point may
not exist. The following theorem gives sufficient conditions for the existence of
maximising or minimising points - namely, that the function f is continuous
and the state space X is compact. Although these conditions are fundamental,
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they are too strong to be useful in many applications. We will return to these
issues later on.

1.74 theorem. Let K be a compact metric space and f : K → R a continuous real-
valued function. Then, f is bounded on K and attains its maximum and minimum.
That is, there are points x, y ∈ X such that

f (x) = inf
z∈K

f (z) f (y) = sup
z∈K

f (z).

Proof. From theorem 1.72, the image f (K) is a compact subset of R, and there-
fore f is bounded by the Heine-Borel theorem 1.60. It is enough to prove that
f attains its minimum, because the application of the result to − f implies that
f attains its maximum. Since f is bounded, it is bounded from below, and the
infimum m of f on K is finite. By the definition of the infimum, for each n ∈N

there is an xn ∈ K such that

m ≤ f (xn) < m +
1
n

.

This inequality implies that

lim
n→+∞

f (xn) = m. (11)

The sequence (xn) need not converge, but since K is compact the sequence
has a convergent subsequence, which we denote by (xnk ). We denote the limit
of the subsequence by x. Then, since f is continuous, we have from (11) that

f (x) = lim
k→+∞

f (xnk ) = m.

Therefore, f attains its infimum m at x.

The strategy of this proof is typical of many compactness arguments. We
construct a sequence of approximate solutions of our problem, in this case a
minimising sequence (xn) that satisfies (11). We use compactness to extract
a convergent subsequence, and show that the limit of the convergent subse-
quence is a solution of our problem, in this case a point where f attains its
infimum.

1.8 Exercises

1. Let (X, ‖ · ‖) be a linear normed space on R (or C), and let d be the
induced metric on X, i. e. d(x, y) = ‖x− y‖. Prove that

• d is translation invariant, i.e. d(x + z, y + z) = d(x, y) for all x, y, z ∈
X,

• d is 1-homogeneous, i.e. d(λx, λy) = |λ|d(x, y) for all x, y ∈ X and
λ ∈ R (or C).
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2. Let (X, ‖ · ‖) be a normed linear space. For x, y ∈ X define

d(x, y) .
=

‖x− y‖
1 + ‖x− y‖ .

• Prove that (X, d) is a metric space.

• Prove that, for all x, y, z ∈ X, one has the translation invariance
property

d(x + z, y + z) = d(x, y).

3. Prove that the map d : R2 ×R2 → R defined by

d((x1, y1), (x2, y2))

=

{
1 if

√
(x1 − x2)2 + (y1 − y2)2 ≥ 1√

(x1 − x2)2 + (y1 − y2)2 if
√
(x1 − x2)2 + (y1 − y2)2 < 1

is a metric on R2

4. Let the sequence of rational numbers (xn) be defined recursively via the
formula

xn+1 =
x2

n + 2
2xn

, n = 1, 2, 3, . . . , x1 = 2.

(a) Prove that xn ≥
√

2 for all n ≥ 1.

(b) Prove that xn+1 ≤ xn for all n ≥ 1, i.e. the sequence is increasing in
n (Hint: use (a)).

(c) Prove that (xn) is convergent (Hint: use some basic theory of se-
quences, monotone sequences... boundedness...).

(d) Prove that (xn) is a Cauchy sequence (Hint: estimate directly the
difference xn − xn+1).

(e) Prove that the limit of (xn) is irrational.

(f) Use the above to prove that not all Cauchy sequences of rational
numbers are convergent in Q.

5. Let X be a set, and let d be the distance

d(x, y) =

{
1 if x 6= y
0 if x = y.

Let xn be a convergent sequence in the metric space (X, d). Prove that
there exists N ∈N such that xn = xm for all n, m ≥ N, i.e. prove that the
sequence is eventually constant.

6. Let A be a subset of a metric space (X, d). Prove that A is bounded (i.e.
diam A is finite) if and only if there exists x0 ∈ X and M ∈ R such that
d(x0, x) ≤ M for all x ∈ A.
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7. Let s : R→ R defined by s(x) = x2. Prove that s is continuous on R but
not uniformly. Prove that s|[a,b] is uniformly continuous for al a, b ∈ R,
a < b.

8. Prove that an affine function f : Rn → Rm can be written as f (x) =
Ax + b, where A is a constant m× n matrix and b is a constant m-vector.

9. Prove that an affine function f : Rn → Rm is uniformly continuous.

10. Suppose that (X, dX) and (Y, dY) are metric spaces. Prove that the Carte-
sian product Z = X × Y is a metric space with the metric d defined
by

d(z1, z2) = dX(x1, x2) + dY(y1, y2),

where z1 = (x1, y1) and z2 = (x2, y2).

11. Let X be a normed linear space. A series ∑+∞
n=1 xn in X is absolutely con-

vergent if ∑+∞
n=1 ‖xn‖ converges to a finite value in R. Prove that X is a

Banach space if and only if every absolutely convergent series converges.

12. Let f : R→ R, with R equipped with the usual Euclidean distance. Let

f (x) =

{
x if x ≤ 0
x + 1 if x > 0.

Prove that f is lower semi-continuous.

13. Let (X, dX), (Y, dY), and (Z, dZ) be metric spaces and let f : X → Y
and g : Y → Z be continuous functions. Show that the composition
h = g ◦ f : X → Z defined by h(x) = g( f (x)) is also continuous.

14. Suppose that F and G are closed and open subsets of Rn, respectively,
such that F ⊂ G. Show that there is a continuous function f : Rn → R

such that

• 0 ≤ f ≤ 1

• f (x) = 1 for all x ∈ F,

• f (x) = 0 for all x ∈ Gc.

Hint: consider the function

f (x) =
d(x, Gc)

d(x, Gc) + d(x, f )
.

This result is called (a special case of) Uhryson’s lemma.

15. Prove that a closed subset of a compact space is compact.

16. Let (X, d) be a metric space and let Y ⊂ X. Prove that (Y, d) is complete
if and only if Y is a closed subset of X.
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2 Spaces of continuous functions

In section 1, we introduced the notion of normed linear space, with finite
dimensional Euclidean space Rn as the main example. In this section, we
study linear spaces of continuous functions on a compact set equipped with
the uniform norm. These function spaces are our first examples of infinite-
dimensional normed linear spaces, and we explore the concepts of conver-
gence, completeness, density, and compactness in this context. More practi-
cally, we learn for the first time how to compute distances between functions.
Functions will be treated as points in a linear space equipped with a norm.
We will focus in particular on the problem of compactness of sets of functions.
As an application, we prove an existence result for initial value problems for
ordinary differential equations.

2.1 Convergence of function sequences

Suppose that ( fn) is a sequence of real-valued functions fn : X → R defined
on a metric space X. What should we mean by fn → f ? Two natural ways to
answer this question are the following:

• The functions fn are defined by their real values fn(x) ∈ R with x vary-
ing in X. So the sequence of functions converges if the values xn(x)
converge. That is, we say fn → f if fn(x) → f (x) for all x ∈ X. This
definition reduces the convergence of a function sequence to the conver-
gence of real numbers, which which we are already familiar. This type
of convergence is called pointwise convergence.

• We define a suitable notion of the distance between functions, and say
that fn → f id the distance between fn and f tends to zero. In this
approach, we regard the functions as points in a metric space, and use
metric convergence.

Both of these ideas are useful. It turns out, however, that they are not
compatible. For most domains X - for example any uncountable domain -
pointwise convergence cannot be expressed as convergence with respect to
a metric. The next example shows that pointwise convergence is not a good
notion of convergence to use for continuous functions because it does not
preserve continuity.

2.1 example. We define fn : [0, 1]→ R by

fn(x) = xn.

It is easily checked that the sequence ( fn) converges pointwise to the function
f given by

f (x) =

{
0 if 0 ≤ x < 1
1 if x = 1.

The pointwise limit f is discontinuous at x = 1.

34



2.1. Convergence of function sequences

In view of these somewhat pathological features of pointwise convergence,
we consider metric convergence. As we will see, there are many different ways
to define a distance between functions, and different metrics or norms usually
lead to different types of convergence. A natural norm on spaces of continuous
functions the uniform or sup norm, which is defined by

‖ f ‖∞
.
= sup

x∈X
| f (x)|. (12)

The norm ‖ · ‖∞ is finite if and only if f is bounded. The reason for the nota-
tion will become clear when we study Lp spaces later on. Two functions are
close in the metric associated with the uniform norm if their pointwise values
are uniformly close. Metric convergence with respect to the uniform norm is
called uniform convergence.

2.2 definition. A sequence of bounded, real-valued functions ( fn) on a met-
ric space X converges uniformly to a function f is

lim
n→+∞

‖ fn − f ‖∞ = 0.

Uniform convergence implies pointwise convergence. This fact is an easy
exercise that we leave to the student. The sequence defined in example 2.1
shows that the opposite implication does not hold, since fn → f pointwise,
but ‖ fn− f ‖∞ = 1 for every n, and hence ‖ fn− f ‖∞ does not converge to zero.
Unlike pointwise convergence, uniform convergence preserves continuity.

2.3 theorem. Let ( fn) be a sequence of bounded, continuous, real-valued functions
on a metric space (X, d). If fn → f uniformly, then f is continuous.

Proof. In order to show that f is continuous at x ∈ X, we need to prove that
for every ε > 0 there is a δ > 0 such that d(x, y) < δ implies | f (x)− f (y)| < ε.
By the triangle inequality, we have

| f (x)− f (y)| ≤ | f (x)− fn(x)|+ | fn(x)− fn(y)|+ | fn(y)− fn(y)|.

Since fn → f uniformly, there is an n ∈N such that

| f (x)− fn(x)| < ε

3
, | f (y)− fn(y)| <

ε

3
for all x, y ∈ X.

Since fn is continuous ar x, there is a δ > 0 such that d(x, y) < δ implies that

| fn(x)− fn(y)| <
ε

3
.

It follows that d(x, y) < δ implies | f (x) − f (y)| < ε, so f is continuous at
x.

The ‘ε/3-trick’ used in this proof has many other applications. The proof
fails if fn → f pointwise but not uniformly.

The notion of uniform convergence of a sequence of functions can be easily
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2. Spaces of continuous functions

extended to series of functions. Given a sequence of functions ( fn) on a metric
space X, consider the sequence of partial sums

Sn(x) =
n

∑
k=1

fn(x).

We say that the series ∑ fn converges pointwise at x ∈ X if the series of
real numbers ∑ fn(x) converges. We say that ∑ fn converges uniformly if the
sequence of functions (Sn) converges uniformly.

2.2 Spaces of continuous functions

Let X be a metric space. We denote the set of continuous, real-valued func-
tions f : X → R by C(X). The set C(X) is a real linear space under the
pointwise addition and functions and the scalar multiplication of functions
by real numbers. That is, for f , g ∈ C(X) and λ ∈ R, we define

( f + g)(x) = f (x) + g(x), (λ f )(x) = λ f (x).

From theorem 1.74, a continuous function f on a compact metric space K is
bounded, so the uniform norm ‖ f ‖∞ is finite for f ∈ C(K). It is straightfor-
ward to check that C(K) equipped with the uniform norm is a normed linear
space. For example, the triangle inequality holds because

‖ f + g‖∞ = sup
x∈K
| f (x) + g(x)| ≤ sup

x∈K
| f (x)|+ sup

x∈K
|g(x)| = ‖ f ‖∞ + ‖g‖∞.

We will always use the uniform norm on C(K), unless we state explicitly
otherwise. A basic property of C(K) is that it is complete, and therefore a
Banach space.

2.4 theorem. Let K be a compact metric space. The space C(K) is complete.

Proof. Let ( fn) be a Cauchy sequence in C(K) with respect to the uniform
norm. We have to show that ( fn) converges uniformly. We do this in two
steps. First we construct a candidate function f for the limit if the sequence,
second we show that the sequence converges uniformly to f .

The fact that ( fn) is Cauchy implies that the sequence of real numbers
( fn(x)) is Cauchy in R for each x ∈ K. Indeed,

| fn(x)− fm(x)| ≤ ‖ fn − fm‖∞,

and the latter term is less than ε > 0 for n, m larger than some N = N(ε).
Since R is complete, the sequence of pointwise values converges, and we can
define a function f : K → R by

f (x) = lim
n→+∞

fn(x).

For the second step, we use the fact that ( fn) is Cauchy in C(K) to prove that
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2.2. Spaces of continuous functions

it converges uniformly to f . Since fm(x)→ f (x) as m→ +∞, we have

‖ fn − f ‖∞ = sup
x∈K
| fn(x)− f (x)| = sup

x∈K
lim

m→+∞
| fn(x)− fm(x)|

≤ lim inf
m→+∞

sup
x∈K
| fn(x)− fm(x)|. (13)

The last inequality above uses elementary properties of lim inf and sup proven
in example 1.22. The fact that ( fn) is Cauchy in the uniform norm means that
for all ε > 0 there is an N such that

sup
x∈K
| fn(x)− fm(x)| < ε for all n, m ≥ N.

It follows from (13) that ‖ fn − f ‖∞ ≤ ε for all n ≥ N, which proves that
‖ fn− f ‖∞ → 0 as n→ +∞. By theorem 2.3, the limit function f is continuous,
and therefore belongs to C(K). Hence, C(K) is complete.

2.5 example. Suppose K = {x1, . . . , xn} is a finite space, with metric d defined
by d(xi, xj) = 1 for i 6= j. A function f : K → R can be identified with a point
y = (y1, . . . , yn) ∈ Rn, where f (xj) = yj, and

‖ f ‖∞ = max
1≤i≤n

|yi|.

The space C(K) is linearly isomorphic to the finite-dimensional space Rn with
the maximum norm, which we have already observed is a Banach space. If
K contains infinitely many points, for example if K = [0, 1], then C(K) is an
infinite-dimensional Banach space.

The same proof applies to complex-valued functions f : K → C, and the
space of complex-valued continuous functions on a compact metric space is
also a Banach space with the uniform norm.

The pointwise product of two continuous functions is continuous, so C(K)
has an algebra structure. The product is compatible with the norm, in the sense
that

‖ f g‖∞ ≤ ‖ f ‖∞‖g‖∞. (14)

We way that C(K) is a Banach algebra. Strict inequality may occur in (14); for
example, the product of two functions that are nonzero on disjoint sets is zero.

Equation (12) does not define a norm on C(K) when X is not compact,
since continuous functions may be unbounded. The space Cb(X) of bounded
continuous functions on X is a Banach space with respect to the uniform
norm.

2.6 definition. The support, supp f , of a function f : X → R (or f : X → C)
on a metric space X is the closure of the set on which f is nonzero,

supp f .
= {x ∈ X : f (x) 6= 0}.
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2. Spaces of continuous functions

We say that f has compact support if supp is a compact subset of X, and de-
note the space of continuous functions on X with compact support by Cc(X).

The space Cc(X) is a linear subspace of Cb(X), but it need not be closed,
in which case it is not a Banach space. We denote the closure of Cc(X) in
Cb(X) by C0(X). Since C0(X) is a closed linear subspace of a Banach space, it
is also a Banach space. We have the following inclusions between these spaces
of continuous functions:

C(X) ⊃ Cb(X) ⊃ C0(X) ⊃ Cc(X).

If X is compact, then these spaces are equal.

2.7 example. A function f : Rd → R has compact support if there is an
R > 0 such that f (x) = 0 for all x with ‖x‖ > R. The space C0(R

d) consists
of continuous functions that vanish at infinity, meaning that for every ε > 0
there is an R > 0 such that ‖x‖ > R implies that | f (x)| < ε. We write this
condition as lim‖x‖→+∞ f (x) = 0.

2.8 example. Consider real functions f : R → R. then f (x) = x2 is in C(R)
but not in Cb(R). The constant function f (x) = 1 is in Cb(R) but not C0(R).
The function f (x) = e−x2

is in C0(R) but not in Cc(R). The function

f (x) =

{
1− x2 if |x| ≤ 1
0 if |x| > 1

is in Cc(R).

2.3 Approximation by polynomials

A polynomial p : [a, b]→ R on a closed, bounded interval [a, b] is a function of
the form

p(x) =
n

∑
k=0

ckxk,

where the coefficients ck are real numbers. If cn 6= 0, the integer n ≥ 0 is called
the degree of p. Clearly, polynomials are a special case of continuous func-
tions. The Weierstrass Approximation Theorem states that every continuous
function f : [a, b] → R can be approximated by a polynomial with arbitrary
accuracy in the uniform norm.

2.9 theorem (Weierstrass approximation). The set of polynomials on [a, b] is
dense in C([a, b]).

Proof. We need to show that for any f ∈ C([a, b]) there is a sequence of poly-
nomials (pn) such that pn → f uniformly.

We first show that, by shifting and rescaling x, it is sufficient to prove the
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2.3. Approximation by polynomials

assertion in the case [a, b] = [0, 1]. We define T : C([a, b])→ C([0, 1]) by

(T f )(x) = f (a + (b− a)x).

Then, T is a linear invertible map, with inverse

(T−1 f )(x) = f
(

x− a
b− a

)
.

Moreover, T is an isometry (see the Exercises), since ‖T f ‖∞ = ‖ f ‖∞, and
for any polynomial p both Tp and T−1 p are polynomials. If polynomials are
dense in C([0, 1]), then for any f ∈ C([a, b]) we have polynomials pn such that
pn → T f in (C([0, 1]), ‖ · ‖∞). Since T−1 is continuous (see the Exercises), the
polynomials T−1 pn converge to f in C([a, b]).

To show that polynomials are dense in C([0, 1]), we use a proof by Bern-
stein, which gives an explicit formula for a sequence of polynomials converg-
ing to a function f in C([0, 1]). These polynomials are called the Bernstein
polynomials of f , and are defined by

Bn(x; f ) .
=

n

∑
k=0

f
(

k
n

)(
n
k

)
xk(1− x)n−k.

It is an easy exercise to show that each term xk(1− x)n−k attains its maximum
at x = k/n. Here,(

n
k

)
=

n!
(n− k)! k!

.

The binomial theorem implies that

n

∑
k=0

(
n
k

)
xk(1− x)k = 1.

Therefore, the difference between f and its n-th Bernstein polynomial can be
written as

Bn(x; f )− f (x) =
n

∑
k=0

[
f
(

k
n

)
− f (x)

] (
n
k

)
xk(1− x)n−k.

Taking the supremum with respect to x of the absolute value of this equation,
we get

‖Bn(·; f )− f (x)‖∞ ≤ sup
0≤x≤1

[
n

∑
k=0

∣∣∣∣ f ( k
n

)
− f (x)

∣∣∣∣ (n
k

)
xk(1− x)n−k

]
. (15)

Here, we use Bn(x; f ) to denote the value of the Bernstein polynomial at x,
and Bn(·; f ) to denote the corresponding polynomial function.

Let ε > 0 be an arbitrary positive number. From Theorem 1.73, the function
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2. Spaces of continuous functions

f is uniformly continuous, so there is a δ such that

|x− y| < δ implies | f (x)− f (y)| < ε,

for all x, y ∈ [0, 1]. To estimate the right-hand-side of (15), we divide the terms
in the series into two groups. We let

I(x) = {k : 0 ≤ k ≤ n and |x− (k/n)| < δ},
J(x) = {k : 0 ≤ k ≤ n and |x− (k/n)| ≥ δ}.

Then, we get the following estimate,

‖Bn(·; f )− f ‖∞ ≤ε sup
0≤x≤1

 ∑
k∈I(x)

(
n
k

)
xk(1− x)n−k


+ sup

0≤x≤1

 ∑
k∈J(x)

∣∣∣∣ f ( k
n

)
− f (x)

∣∣∣∣ (n
k

)
xk(1− x)n−k


≤ ε + 2‖ f ‖∞ sup

0≤x≤1

 ∑
k∈J(x)

(
n
k

)
xk(1− x)n−k

 . (16)

Since [x − (k/n)]2 ≥ δ2 for k ∈ J(x), the sum on the last term in (16) can be
estimated as follows:

sup
0≤x≤1

 ∑
k∈J(x)

(
n
k

)
xk(1− x)n−k


≤ 1

δ2 sup
0≤x≤1

 ∑
k∈J(x)

(
x− k

n

)2 (n
k

)
xk(1− x)n−k


≤ 1

δ2 sup
0≤x≤1

[
n

∑
k=0

(
x2 − 2k

n
+

k2

n2

)(
n
k

)
xk(1− x)n−k

]

=
1
δ2 sup

0≤x≤1

[
x2Bn(x; 1)− 2xBn(x; x) + Bn(x; x2)

]
. (17)

To find an expression for the Bernstein polynomials Bn(x; 1), Bn(x; x), and
Bn(x; x2), we write out the binomial expansion of (x + y)n, compute the first
and second derivatives of the expansion with respect to x, and rearrange the
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2.4. Compact subsets of C(K)

results. This gives

(x + y)n =
n

∑
k=0

(
n
k

)
xkyn−k,

x(x + y)n−1 =
n

∑
k=0

(
k
n

)(
n
k

)
xkyn−k,

(
n− 1

n

)
x2(x + y)n−2 +

(
1
n

)
x(x + y)n−1 =

n

∑
k=0

(
k
n

)2 (n
k

)
xkyn−k.

Evaluation of these equations at y = 1− x gives

Bn(x; 1) = 1

Bn(x; x) = x

Bn(x; x2) =

(
n− 1

n

)
x2 +

(
1
n

)
x,

for all n ≥ 1. Inserting these terms in (17), after some manipulations we easily
obtain from (16)

‖Bn(·; f )− f ‖∞ ≤ ε +
‖ f ‖∞

2nδ2 .

Taking the lim sup of the above inequality as n→ +∞, we get

lim sup
n→+∞

‖Bn(·; f )− f ‖∞ ≤ ε.

Since ε is arbitrary, we have that Bn(·; f ) converge uniformly to f .

The Weierstrass approximation theorem differs from Taylor’s theorem,
which states that a function with sufficiently many derivatives can be ap-
proximated locally by its Taylor polynomial. The Weierstrass approximation
theorem applied to a continuous function, which need not be differentiable,
and states that there is a global polynomial approximation of the function on
the whole interval [a, b].

2.4 Compact subsets of C(K)

The proof of the Heine-Borel theorem, that a subset of Rn is compact if and
only if it is closed and bounded, uses the finite-dimensionality of Rn in an es-
sential way. Compact subsets of infinite-dimensional normed spaces are also
closed and bounded, but these properties are no longer sufficient for com-
pactness. In this subsection, we prove the Arzelà-Ascoli theorem, which char-
acterises the compact subsets of C(K).

2.10 definition. Let F be a family of functions from a metric space (X, dX) to
a metric space (Y, dY). The family F is equicontinuous if for every x ∈ X and
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2. Spaces of continuous functions

ε > 0 there is a δ > 0 such that dX(x, y) < δ implies dY( f (x), f (y)) < ε for all
f ∈ F .

The crucial point in this definition is that δ does not depend on f , al-
though it may depend on x. If δ can be chosen independent of x as well,
then the family is said to be uniformly equicontinuous. The following theorem
is a generalisation of theorem 1.73. The proof is left as an exercise (see the
Exercises).

2.11 theorem. An equicontinuous family of functions from a compact metric space
to a metric space is uniformly equicontinuous.

Next, we give necessary and sufficient conditions for compactness in C(K).

2.12 theorem (Arzelá-Ascoli). Let K be a compact metric space. A subset of C(K)
is compact if and only if it is closed, bounded, and equicontinuous.

Proof. Recall that a set is precompact if its closure is compact, and that a set is
compact if and only if it is closed and precompact.

Step 1. We first prove that a precompact subset is equicontinuous. Suppose
F is a precompact subset of C(K). Fix ε > 0. Since F is dense in F , we have

F ⊂
⋃

f∈F
Bε/3( f ).

Since F is compact, there is a finite subset { f1, . . . , fk} of F such that

F ⊂
k⋃

i=1

Bε/3( fi).

Each fi is uniformly continuous by Theorem 2.11, so there is a δi > 0 such that
d(x, y) < δi implies | fi(x)− fi(y)| < ε/3 for all x, y ∈ K. We define δ by

δ
.
= min

1≤i≤k
δi.

Clearly, δ > 0. For every f ∈ F , there is an 1 ≤ i ≤ k such that ‖ f − fi‖∞ <
ε/3. We conclude that for d(x, y) < δ

| f (x)− f (y)| ≤ | f (x)− fi(x)|+ | fi(x)− fi(y)|+ | fi(y)− f (y)| < ε.

Since ε is arbitrary and δ is independent of f , the set F is equicontinuous.
Step 2. Assume F is bounded and equicontinuous. We want to show that

F is pre-compact. Let { fn}n∈N ⊂ F be a sequence in F . It suffices to prove
that fn has a subsequence which is a Cauchy sequence. This will then imply
that the subsequence will converge to some f ∈ C(X), as C(X) is a com-
plete metric space. Let ε > 0, and let δ > 0 given as by the equicontinu-
ity assumption. Since K is compact, we can cover K with finitely many balls
Bδ(x1), . . . , Bδ(xN) with radius δ (K is totally bounded). Hence, for a given
x ∈ K, x ∈ Bδ(xj) for some j ∈ {1, . . . , N}. Hence, we can use the equiconti-
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2.4. Compact subsets of C(K)

nuity and get

| fn(x)− fm(x)| ≤ | fn(x)− fn(xj)|+ | fn(xj)− fm(xj)|+ | fm(xj)− fm(x)|
≤ 2ε + | fn(xj)− fm(xj)|.

Now, the sequence vn := ( fn(x1), . . . , fn(xN)) ∈ RN is bounded in view of
F being bounded. Therefore, in view of Heine-Borel theorem there exists a
convergent subsequence vnk . This means that there exists M ∈ N such that
for all h, k ≥ M we have

| fnh(xj)− fnk (xj)| < ε, for all j ∈ {1, . . . , N}.

Therefore, | fnh(x)− fnk (x)| < 3ε for all x ∈ X. We have therefore shown that,

for a given ε > 0 we can extract a subsequence { f (1)n } such that

‖ f (1)n − f (1)m ‖∞ ≤ 3ε, for all n, m ≥ Mε,

for a suitable Mε ∈ N. Now, fix ε = 1 and extract the subsequence { f (1)n } as
above. Then fixe ε = 1/2 and extract from { f (1)n } another subsequence { f (2)n },
and so on. The diagonal sequence { f (n)n } will satisfy

‖ f (n)n − f (m)
m ‖∞ ≤

3
k

for n, m ≥ Mk for some suitable Mk depending on k. Hence, f (n)n is a Cauchy
sequence, and the assertion follows.

2.13 example. For each n ∈N, we define a function fn : [0, 1]→ R by

fn(x) =


0 if 0 ≤ x ≤ 2−n

2n+1(x− 2−n) if 2−n ≤ x ≤ 3 · 2−(n+1)

2n+1(2−(n−1) − x) if 3 · 2−(n+1) ≤ x ≤ 2−(n−1)

0 if 2−(n−1) ≤ x ≤ 1.

These functions consist of ‘tent’ functions of height one that move from right
to left across the interval [0, 1], becoming narrower and steeper as they do so.

Let F = { fn : n ∈ N}. Then ‖ fn‖∞ = 1 for all n ≥ 1, so F is bounded,
but ‖ fm− fn‖∞ = 1 for all m 6= n, so the sequence ( fn) does not have any con-
vergent subsequence. Hence, the set F is a closed, bounded subset of C([0, 1])
which is not compact. Note that F is not equicontinuous either, because the
graphs of fn become steeper as n gets larger.

2.14 definition. A function f : X → R on a metric space X is Lipschitz con-
tinuous on X if there is a constant C ≥ 0 such that

| f (x)− f (y)| ≤ Cd(x, y) for all x, y ∈ X. (18)
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2. Spaces of continuous functions

We will often abbreviate the term ‘Lipschitz continuous’ to ‘Lipschitz’.

2.15 exercise. Prove that every Lipschitz continuous function is uniformly
continuous.

2.16 example. The function f : [0, 1]→ R defined by f (x) =
√

x is uniformly
continuous, but it is not Lipschitz, because

lim
x→0+

|g(x)− g(0)|
|x− 0| = +∞.

If f : X → R is a Lipschitz function, then we define the Lipschitz constant
Lip( f ) of f by

Lip( f ) .
= sup

x 6=y

| f (x)− f (y)|
d(x, y)

.

Equivalently, Lip( f ) is the smallest constant C that works in the Lipschitz
condition (18), i.e.

Lip( f ) = inf{C : | f (x)− f (y)| ≤ Cd(x, y) for all x, y ∈ X}.

Suppose that K is a compact metric space and M > 0. We define a subset FM
of C(K) by

FM = { f : f is Lipschitz on K and Lip( f ) ≤ M}.

The set FM is equicontinuous, since if ε > 0 and δ = ε/M, then

d(x, y) < δ implies | f (x)− f (y)| < ε for all f ∈ FM.

The set FM is closed, since if ( fn) is a sequence in FM that converges uni-
formly to f in C(K), then

Lip( f ) = sup
x 6=y

| f (x)− f (y)|
d(x, y)

= sup
x 6=y

[
lim

n→+∞

| fn(x)− fn(y)|
d(x, y)

]

≤ lim inf
n→+∞

[
sup
x 6=y

| fn(x)− fn(y)|
d(x, y)

]
≤ M,

where we have use example 1.22. Thus, the limit f belongs to FM. The set
FM is not bounded, since the constant functions belong to FM and their sup-
norms are arbitrarily large. Consequently, although FM itself is not compact,
the Arzelà-Ascoli theorem implies that every closed, bounded subset of FM is
compact, and every bounded subset of FM is precompact.
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2.17 example. Suppose that x0 is a point in a compact metric space K. Let

BM = { f ∈ FM : f (x0) = 0}.

Then, BM is bounded because for every f ∈ BM we have

‖ f ‖ = sup
x∈K
| f (x)− f (x0)| ≤ M sup

x∈K
|x− x0| ≤ Mdiam(K),

where diam(K) is finite since K is compact, and hence bounded. The set BM
is closed, since if fn(x0) = 0 and fn → f in C(K), then

f (x0) = lim
n→+∞

fn(x0) = 0.

Therefore, the set BM is a compact subset of C(K).

A continuously differentiable function with bounded partial derivatives
on a convex, open subset of Rn is Lipschitz, see the Exercises. A Lipschitz
continuous function need not be differentiable everywhere, however, since its
graph may have corners.

2.18 example. The absolute value function f (x) = |x| is Lipschitz continuous
with Lipschitz constant one, because

| f (x)− f (y)| = ||x| − |y|| ≤ |x− y|.

However, f is not differentiable at x = 0.

2.19 example. Let C1([0, 1]) denote the space of all continuous functions f on
[0, 1] with continuous derivative f ′. For constants M > 0 and N > 0, we define
the subset F of C([0, 1]) by

F = { f ∈ C1([0, 1]) : ‖ f ‖∞ ≤ M , ‖ f ′‖∞ ≤ N}.

For all f ∈ F and x, y ∈ [0, 1] we have

| f (x)− f (y)| =

∣∣∣∣∣∣
y∫

x

f ′(z)dz

∣∣∣∣∣∣ ≤ |x− y|‖ f ′‖∞ ≤ M|x− y|.

Since F is bounded in C([0, 1]), Arzelà-Ascoli theorem implies that F is pre-
compact in C([0, 1]). However, F is not closed, because the uniform limit of
continuously differentiable functions need not be differentiable. Thus, F is
not compact. Its closure in C([0, 1]) is the compact set

F = { f ∈ C([0, 1]) : ‖ f ‖ ≤ M , Lip( f ) ≤ N}.

A family of continuously differentiable functions with uniformly bounded
derivatives is equicontinuous, see also the Exercises. If the family is also
bounded, then it is precompact. The idea that a uniform bound on suitable
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2. Spaces of continuous functions

norms of the derivatives of a family of functions implies that the family is
precompact will reappear in the study of Sobolev spaces.

2.20 example. In many applications one may need to work with functions
that are continuously differentiable, i.e. functions f such that the first derivative
f ′ is continuous. Such a set is typically referred to as C1(A) where A is the
domain of the functions. Let us consider the case A = [a, b]. A well known
calculus theorem states that C1([a, b]) ⊂ C([a, b]), that is, every continuously
differentiable function is also continuous. Clearly, C1([a, b]) is a linear space.
This is a simple exercise (every linear combination of continuously differen-
tiable functions is continuously differentiable). Hence, C1([a, b]) may be seen
as a linear subspace of C([a, b]). Then, a natural question arises: is C1([a, b])
closed in (C([a, b]), ‖ · ‖∞)?

The answer to said question is no, it is not. Indeed, it is not difficult to
construct examples of sequences of C1 functions converging uniformly to a
function that is not C1. For instance, consider [a, b] = [−1, 1] and

fn(x) =
nx2

1 + n|x| , x ∈ [−1, 1].

We claim that ‖ fn − f ‖∞ → 0 as n→ +∞ with f (x) = |x|. Indeed, computing

| fn(x)− f (x)| = |nx2 − |x|(1 + n|x|)|
1 + n|x| =

|x|
1 + n|x| ,

and observing that | fn − f | is therefore an even function, we have

‖ fn − f ‖∞ = max
x∈[0,1]

x
1 + nx

.

By computing the derivative

d
dx

x
1 + nx

=
1 + nx− nx
(1 + nx)2 =

1
(1 + nx)2 ≥ 0

we decuce the maximum above is achieved at x = 1, therefore ‖ fn − f ‖∞ =
1

1+n → 0, which proves the uniform convergence. On the other hand, it is well
known that the function f (x) = |x| is not differentiable at x = 0.

Since C1([a, b]) is in general not closed in C([a, b]), we automatically de-
duce that (C1([a, b]), ‖ · ‖∞), is not a Banach space (it is a normed linear space
indeed, but it is not complete!). In order to make C1([a, b]) a complete normed
linear space we need to equip it with the norm

‖ f ‖C1 = ‖ f ‖∞ + ‖ f ′‖∞.

Such a norm incorporates the information on the first derivative as well.
Let us prove that (C1([a, b]), ‖ · ‖C1) is complete. Assume fn ∈ C1([a, b]) is

a Cauchy sequence. Since

‖ fn − fm‖∞ ≤ ‖ fn − fm‖∞ + ‖ f ′n − f ′m‖∞ = ‖ fn − fm‖C1
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we deduce that fn is Cauchy in the space (C([a, b]), ‖ · ‖∞), which is a Banach
space. Therefore, there exists f ∈ C([a, b]) such that fn → f in the ‖ · ‖∞ norm.
Similarly, we deduce that f ′n is Cauchy in (C([a, b]), ‖ · ‖∞) and for the same
reason there exists g ∈ C([a, b]) such that f ′n → g in ‖ · ‖∞. Now, if we prove
that g = f ′ then we would get that

‖ fn − f ‖∞ + ‖ f ′n − f ′‖∞ → 0

which would prove the assertion. On the other hand, since fn is continuously
differentiable, from the fundamental theorem of integral calculus we get

fn(x) =
x∫

a

f ′n(y)dy.

By letting n→ +∞ on both sides of the above identity, we get

f (x) =
x∫

a

g(y)dy,

because on the right hand side fn(x) converges pointwise to f (x) (uniform
implies pointwise) and on the left hand side we know that we can interchange
limit and integral if the convergence is uniform ( f ′n converges uniformly to f ).
Hence, the fundamental theorem of integral calculus implies once again that
f ′ = g.

2.21 example. The above example can be extended as follows to functions
with k-derivatives. The space Ck([a, b]) of k-times continuously differentiable
functions on [a, b] is not a Banach space with respect to the sup-norm ‖ · ‖∞
for k ≥ 1, since the uniform limit of continuously differentiable functions need
not be differentiable. We define the Ck-norm by

‖ f ‖Ck = ‖ f ‖∞ + ‖ f ′‖∞ + ‖ f ′′‖∞ + . . . + ‖ f (k)‖∞.

Then Ck([a, b]) is a Banach space with respect to the Ck-norm. Convergence
with respect to the Ck-norm is uniform convergence of functions and their
first k derivatives. We omit the details.

2.5 Application to differential equations

As outlined in the introduction to this course, functional analysis provides
tools to solving mathematical problems in an abstract setting. Differential
equations are a major example in this setting, either the case of ordinary differ-
ential equations (ODEs) and the case of partial differential equations (PDEs).
In the remaining part of this subsection we shall use functional analysis to
prove a classical existence theorem for differential equations called Peano’s
theorem.

We consider a scalar, first order ODE for a real-valued function u(t) of the
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form

u̇ = f (t, u). (19)

In (19), we use u̇(t) to denote the derivative of u with respect to t, and f :
R2 → R is a given continuous function. A solution of (19), defined in an open
interval I ⊂ R, is a continuously differentiable function j : I → R such that

u̇(t) = f (t, u(t)) for all t ∈ I.

If the solution is defined on the whole R, then we call it a global solution. If the
solution is defined only on a subinterval of R, the we call it a local solution. We
will refer to the independent variable t as time. We consider the initial value
problem (IVP){

u̇(t) = f (t, u)
u(t0) = u0.

(20)

Here t0 ∈ R is a given initial time, and u0 is a given initial value. It is known
that the only assumption of f being continuous does not imply that (20) has a
unique solution, see the Exercises. However, the continuity of f guarantees the
existence of at least one solution.

2.22 theorem (Peano). Suppose that f (t, u) is a continuous function on R2. Then,
for every (t0, u0) ∈ R2 there is an open interval I ⊂ R that contains t0, and a
continuously differentiable function u : I → R that satisfies the initial value problem
(20).

Proof. 5

We say that uε(t) is an ε-approximate solution of (20) in an interval I con-
taining t0 if:

(a) uε(t0) = u0,

(b) uε(t) is a continuous function of t that is differentiable at all but finitely
many points of I,

(c) at every point t ∈ I where u̇ε(t) exists, we have

|u̇ε(t)− f (t, uε(t))| < ε.

To construct an ε-approximate solution uε, we first pick T1 > 0, and let

I1
.
= {t : |t− t0| ≤ T1}.

We partition I1 into 2N subintervals of length h, where T1 = Nh, and let

tk
.
= t0 + kh for −N ≤ k ≤ N.

5The proof is not part of the exam
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2.5. Application to differential equations

We denote the values of the approximate solution at the times tk by uε(tk)
.
=

ak. For 0 ≤ k ≤ N, we define these values by the following finite difference
approximation of the ODE,

ak+1 − ak
h

= f (tk, ak),

a0 = u0.

This discretisation of (20) is called the forward Euler method. It is not an
accurate numerical method for the solution of (20), but its simplicity makes
it convenient for an existence proof. For −N ≤ k ≤ 0 we use the backward
Euler method

ak − ak−1
h

= f (tk, ak),

a0 = u0.

Inside the subinterval tk ≤ t ≤ tk+1, we define uε(t) to be the linear function
of t that takes the appropriate values at the endpoints. That is, for 0 ≤ k ≤ N
we set

uε(t) = ak + bk(t− tk) for tk ≤ t ≤ tk+1,

where the parameters ak and bk are defined recursively by

a0 = u0, ak = ak−1 + hbk−1,

b0 = f (t0, u0), bk = f (tk, ak).

For −N ≤ k ≤ −1, we set

uε(t) = ak + bk+1(t− tk) for tk ≤ t ≤ tk+1,

with

a0 = u0, ak = ak+1 − hbk+1,

b0 = f (t0, u0), bk = f (tk, ak).

Thus, uε(t) is a continuous, piecewise linear function of t that is differentiable
except possibly at the points t = tk, and u̇ε(t) = bk for tk < t < tk+1. For
tk < t < tk+1 with k ≥ 0, we have

|u̇ε(t)− f (t, uε(t))| = | f (tk, ak)− f (t, ak + bk(t− tk))|, (21)

|t− tk| ≤ h, |ak + bk(t− tk)− ak| ≤ |bk|h. (22)

A similar estimate can be carried out for negative k:

|u̇ε(t)− f (t, uε(t))| = | f (tk+1, ak+1)− f (t, ak + bk+1(t− tk))|, (23)

|t− tk+1| ≤ h, |ak + bk+1(t− tk)− ak+1| ≤ 2|bk+1|h. (24)
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2. Spaces of continuous functions

We choose an L > 0, and a T ≤ T1 such that the graph of every uε with
|t− t0| ≤ T is contained in the rectangle R ⊂ R2 given by

R = {(t, u) : |t− t0| ≤ T, |u− u0| ≤ L}.

To do this, we consider the closed rectangle R1 ⊂ R2, centered at (t0, u0),
defined by

R1 = {(t, u) : |t− t0| ≤ T1, |u− u0| ≤ L}.

We let

M .
= sup{| f (t, u)| : (t, u) ∈ R1}, T .

= min(T1, L/M).

It follow that, for |t− t0| ≤ T, the slopes bk of the linear segments of uε are
less than or equal to M, and the graph of uε lies in the cone bounded by the
lines u− u0 = M(t− t0) and u− u0 = −M(t− t0).

Since R is compact, the function f is uniformly continuous on R. Therefore,
for every ε > 0, there is a δ > 0 such that

| f (s, u)− f (t, v)| ≤ ε

for all (s, v), (t, v) ∈ R such that |s− t| ≤ δ and |u− v| ≤ δ. Using (21), (22),
(23), and (24), we see that uε is an ε-approximate solution when h ≤ δ and
2Mh ≤ δ.

Each uε is Lipschitz continuous, and its Lipschitz constant is bounded
uniformly by M, independently of ε. We also have uε(t0) = u0 for all ε. From
example 2.17, the set {uε} is precompact in C([t0 − T, t0 + T]). Hence, there is
a continuous function u and a sequence (εn) with εn → 0 as n → +∞ such
that uεn → u as n→ +∞ uniformly on [t0 − T, t0 + T].

It remains to show that the limiting function u solves (20). Since uε is
piecewise linear, we have

uε(t) = uε(t0) +

t∫
t0

u̇ε(s)ds

= u0 +

t∫
t0

f (s, uε(s))ds +
t∫

t0

[u̇ε(s)− f (s, uε(s))]ds. (25)

Here, u̇ε is not necessarily defined at the points tk, but this does not affect
the value of the integral. We set ε = εn in (25) and let n → +∞. Since f
is uniformly continuous, for a given σ > 0 we can find a µ > 0 such that
|u − v| < µ implies | f (t, u) − f (t, v)| < σ for all t ∈ [t0 − T, t0 + T]. Since
uεn converges uniformly to u in [t0 − T, t0 + T], there is an N ∈ N such that
supt∈[t0−T,t0+T] |uεn(t)− u(t)| < µ for all n ≥ N, and consequently

sup
t∈[t0−T,t0+T]

| f (t, uεn(t))− f (t, u(t))| < σ
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for all n ≥ N, where it is clear that N only depends on σ. This shows that
f (·, uεn(·))→ f (·, u(·)) uniformly in [t0 − T, t0 + T]. Hence,∣∣∣∣∣∣

t∫
t0

f (s, uεn(s))ds−
t∫

t0

f (s, u(s))ds

∣∣∣∣∣∣ ≤
t∫

t0

| f (s, uεn(s))− f (s, u(s))|ds

≤ T sup
t∈[t0−T,t0+T]

| f (t, uεn(t))− f (t, u(t))| → 0, as n→ +∞.

Moreover, since uεn is an εn-approximate solution, we have the trivial estimate∣∣∣∣∣∣
t∫

t0

[u̇ε(s)− f (s, uε(s))]ds

∣∣∣∣∣∣ ≤ |t− t0|εn ≤ Tεn → 0, as n→ +∞.

Hence, (25) with ε = εn and n→ +∞ reads

u(t) = u0 +

t∫
t0

f (s, u(s))ds. (26)

The fundamental theorem of calculus implies that the right hand side of (26)
is continuously differentiable. Therefore, u is also continuously differentiable
in |t− t0| ≤ T, and u̇(t) = f (t, u(t)).

More generally, the same proof applies if f is continuous only in some
open set D ⊂ R2 which contains the initial point (t0, u0), provided we choose
the rectangles R1 and R so that they are contained in D.

Apart from revealing a crucial application of Arzelà’s theorem in a subject
- namely differential equations - strongly linked with applications in science
and engineering, the strategy used in the proof of Peano’s theorem is pedagog-
ically relevant in that it shows how to use functional analysis to approximate
an infinite dimensional object (the solution to an ODE, i.e. a function on a real
interval) by a finite dimensional one, namely the vector

(a−N , a−N+1, . . . , a−1, a0, a1, . . . , aN−1, aN).

This very simple idea is at the basis of numerical calculus, as the student will
see later on in her/his studies.

2.6 The contraction mapping theorem and its applications

In this subsection we state and prove that contraction mapping theorem, which is
one of the simplest and most useful methods for the construction of linear and
nonlinear equations. We also present a number of applications of the theorem.

2.23 definition. Let (X, d) be a metric space. A mapping T : X → X is a
contraction mapping, or contraction, if there exists a constant c, with 0 ≤ c < 1,
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such that

d(T(x), T(y)) ≤ cd(x, y) (27)

for all x, y ∈ X.

Thus, a contraction maps points closer together. In particular, for every
x ∈ X, and any r > 0, all points y in the ball Br(x) are mapped into a ball
Bs(T(x)), with s < r. Clearly, all contractions are Lipschitz continuous, and
hence uniformly continuous.

If T : X → X, then a point x ∈ X such that

T(x) = x (28)

is called a fixed point of T. The contraction mapping theorem states that a
contraction on a complete metric space has a unique fixed point. The contrac-
tion mapping theorem is only one example of what are more generally called
fixed-point theorems. For example, the Schauder fixed point theorem states that
a continuous mapping on a convex, compact subset of a Banach space has a
fixed point. We will not discuss the proof in this course.

In general, the condition that c is strictly less than one is needed for the
uniqueness and existence of the fixed point. For example, if X = {0, 1} is the
discrete metrics space with metric determined by d(0, 1) = 1, then the map T
defined by T(0) = 1, T(1) = 0 satisfies (27) with c = 1, but T does not have
any fixed points. On the other hand, the identity map on any metric space
satisfies (27) with c = 1, and every point is a fixed point. It is worth noting
that (28), and hence its solutions, do not depend on the metric d. Thus, if we
can find any metric on X such that X is complete and T is a contraction on X,
then we obtain the existence and uniqueness of a fixed point.

2.24 theorem (Contraction mapping). If T : X → X is a contraction mapping on
a complete metric space (X, d), then T has exactly one fixed point.

Proof. The proof is constructive, meaning that we will explicitly construct a
sequence converging to the fixed point. Let x0 ∈ X be any point in X. We
define a sequence (xn) in X by

xn+1 = T(xn), for n ≥ 0.

To simplify the notation, we often omit the parentheses around the argument
of a map. We denote the n-th iterate of T by Tn, so that xn = Tnx0.

First, we show that (xn) is a Cauchy sequence. If n ≥ m ≥ 1, then from
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(27) and the triangle inequality. we have

d(xn, xm) = d(Tnx0, Tmx0)

≤ cmd(Tn−mx0, x0)

≤ cm
[
d(Tn−mx0, Tn−m−1x0) + . . . + d(Tx0, x0)

]
≤ cm

[
n−m−1

∑
k=0

ck

]
d(x1, x0)

≤ cm

[
+∞

∑
k=0

ck

]
d(x1, x0)

=

(
cm

1− c

)
d(x1, x0),

which implies that (xn) is a Cauchy sequence since 0 ≤ c < 1. Since X is
complete, (xn) converges to a limit x ∈ X. By continuity of T, we get

Tx = T
(

lim
n→+∞

xn

)
= lim

n→+∞
Txn = lim

n→+∞
xn+1 = x,

which shows that x is a fixed point. Finally, let x, y ∈ X be two fixed points,
then

0 ≤ d(x, y) = d(Tx, Ty) ≤ cd(x, y).

Since c < 1, we have d(x, y) = 0, so x = y and the fixed point is unique.

In the Exercises we consider a simple application of the contraction map-
ping theorem in a finite dimensional case. Applications to spaces of infinite
dimensions are more challenging. We start by considering the most classical
one, namely the next uniqueness theorem for systems of ODEs.

Let f : Rn+1 → R, with notation f = f (t, u), t ∈ R, u ∈ Rn, be a continu-
ous function which is also Lipschitz continuous with respect to the u variable
on a neighborhood of the point (t0, u0) ∈ Rn+1. Consider the IVP{

u̇(t) = f (t, u(t))
u(t0) = u0.

(29)

The problem (29) can be reformulated as an integral equation

u(t) = u0 +

t∫
t0

f (s, u(s))ds. (30)

By the fundamental theorem of calculus, a continuous solution of (30) is a
continuously differentiable solution of (29). Equation (30) can be written as a
fixed point equation

u = Tu
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for the map T defined by

Tu(t) = u0 +

t∫
t0

f (s, u(s))ds.

we want to find conditions which guarantee that T is a contraction on a suit-
able space of continuous functions.

2.25 theorem (Cauchy-Lipschitz). Suppose f : I ×Rn → Rn, where I ⊂ R is an
interval, and let t0 ∈ I. Suppose that f is a continuous function of (t, u), and a locally
Lipschitz function of u around u0 ∈ Rn, uniformly in t, on I ×Rn, i.e. suppose that
there are two constant C, R > 0 such that

| f (t, u)− f (t, v)| ≤ C|u− v| for all u, v ∈ BR(u0) and all t ∈ I. (31)

Then, there are a subinterval [t0, t0 + δ) ⊂ I and a unique continuously differentiable
function u : [t0, t0 + δ)→ Rn that satisfies (29).

Proof. 6

We will show that T is a contraction on the space of continuous functions
defined on a time interval t0 ≤ t ≤ t0 + δ for small δ. First we show that T is
well defined on a bounded subset of C([t0, t0 + δ)). Assuming ‖u− u0‖∞ ≤ r
for some r ∈ (0, R], we estimate

‖Tu− u0‖∞ ≤

∥∥∥∥∥∥
t0+δ∫
t0

(| f (s, u(s))− f (s, u0)|+ | f (s, u0)|) ds

∥∥∥∥∥∥
∞

≤ δ (C‖u− u0‖∞ + ‖ f (·, u0)‖∞) ≤ δ(Cr ++K),

where K = supt∈I | f (t, u0)|. By choosing δ > 0 small enough and r > 0 such
that

δK
1− Cδ

< r,

we obtain ‖Tu− u0‖∞ ≤ r, and the operator T is well defined from Bu0(r) ⊂
C([t0, t0 + δ)) into itself. Note that Bu0(r) is a closed subset of a complete
metric space and is therefore complete.

Now, suppose that u, v : [t0, t0 + δ) → Rn are two continuous functions.

6The proof is not part of the exam
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Then, from (31), we estimate

‖Tu− Tv‖∞ = sup
t∈[t0,t0+δ)

|Tu(t)− Tv(t)|

= sup
t∈[t0,t0+δ)

∣∣∣∣∣∣
t0+δ∫
t0

( f (s, u(s))− f (s, v(s)))ds

∣∣∣∣∣∣
≤ sup

t∈[t0,t0+δ)

t0+δ∫
t0

|( f (s, u(s))− f (s, v(s)))|ds

≤ C sup
t∈[t0,t0+δ)

t0+δ∫
t0

|u(s)− v(s)|ds

≤ Cδ‖u− v‖∞.

It follow that if δ < 1/C then T is a contraction of Bu0(r) ⊂ C([t0, t0 + δ)) into
itself. Therefore there is a unique solution u : [t0, t0 + δ)→ Rn.

2.7 Exercises

1. For the following sequences of functions on a specific domain K ⊂ R,
answer the following questions: 1) find (if it exists) a function f on the
same domain K such that fn converges pointwise to f ; 2) say whether or
not fn converges fo f uniformly; motivate all the answers with suitable
mathematical reasoning:

• fn(x) = xn on K = [0, 1],

• fn(x) = nxe−nx on K = [0, 1] and on K = R,

• fn(x) = (1− x)xn on K = [0, 1],

• fn(x) = nx
1+n2x2 on K = [−1, 1],

• fn(x) = n2x2

1+n2x2 on K = [−1, 1],

• fn(x) = x
1+n2x2 on K = R,

• fn(x) = nxe−n2x on K = [0, 1],

• fn(x) = sin(x/n).

2. Let (A, ‖ · ‖A) and (B, ‖ · ‖B) be two normed spaces. A linear isometry
between A and B is a linear map T : A → B such that ‖Tx‖B = ‖x‖A.
Prove that every surjective, linear isometry is also invertible. Prove that
both T and T−1 are continuous.

3. Consider the Banach space X = C([−1, 1]) equipped with the usual
infinity norm ‖ · ‖. Say which of the following subsets of X are closed
and which ones are dense in X. For those sets that are not closed, find
the closure of the set.

(a) H = { f ∈ X : f (0) = 0}
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(b) H = { f ∈ X : f (x) = 0 for all x ∈ [−1, 0]}
(c) H = { f ∈ X : f is a polynomial of degree ≤ 1}
(d) H = { f ∈ X : f is a polynomial}
(e) H = { f ∈ X : f is a Lipschitz function}
(f) H = { f ∈ X : f is a Lipschitz function with Lipschitz constant ≤ 1}
(g) H = { f ∈ X : f is even}
(h) H = { f ∈ X : f is odd}
(i) H = { f ∈ X : f is strictly increasing}
(j) H = { f ∈ X : f has a local minimum at x = 0}

4. Consider the Banach space X = C([−1, 1]) equipped with the usual
infinity norm ‖ · ‖. Consider the set

H = { f ∈ X : f is strictly decreasing} .

Find H. Justify your answer.

5. Prove that an equicontinuous family of functions from a compact metric
space to a metric space is uniformly equicontinuous.

6. For each n ∈ N, consider fn(x) = sin(nπx). Is the family of functions
{ fn : n ∈ N} compact in C([0, 1]) equipped with the uniform norm?
Motivate your answer.

7. Let F be the subset of C([0, 1]) that consists of functions f of the form

f (x) =
+∞

∑
n=1

an sin(nπx) with
+∞

∑
n=1

n|an| ≤ 1.

(a) Prove that actually f is an element of C([0, 1])
(b) Prove that F is bounded in C([0, 1])
(c) Prove that F is precompact in C([0, 1])

8. Let { fn}n∈N ⊂ C([0, 1]) such that supx∈[0,1] | fn(x)| ≤ 1 for any n ∈ N.
Define Fn : [0, 1]→ R by

Fn(x) =
x∫

0

fn(t) dt.

Show that the sequence {Fn}n∈N has a subsequence that converges uni-
formly on [0, 1].

9. Let G the following subset of C([0, π])

G =

g ∈ C([0, π]; g(x) =
π∫

0

sin(xy) f (y) dy, f ∈ C([0, π]), ‖ f ‖∞ ≤ 1

 .

Prove that G is relatively compact in in C([0, π]).
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10. Suppose that f : C → R is a continuously differentiable function on an
open, convex subset C of Rn, and that the partial derivatives of f are
bounded on C. Prove that f is Lipschitz.

11. Prove that a family of continuously differentiable functions on an open,
convex subset C of Rn with uniformly bounded partial derivatives is
equicontinuous.

12. Give a counterexample to show that fn → f in C([0, 1]) and fn continu-
ously differentiable does not imply that f is continuously differentiable.

13. Consider the space of continuously differentiable functions,

C1([(a, b)]) = { f : [a, b]→ R : f and f ′ are continuous},

equipped with the C1 norm,

‖ f ‖C1
.
= ‖ f ‖∞ + ‖ f ′‖∞.

Prove that C1([(a, b)]) is a Banach space.

14. Prove that the set of Lipschitz continuous functions on [0, 1] with Lips-
chitz constant less than or equal to one and zero integral is compact in
C([0, 1]).

15. Prove that C([a, b]) is separable.

16. Consider the discrete dynamical system

xn+1 = Txn , x0 ∈ [0, 1],

defined on [0, 1] with

Tx = 4µx(1− x).

Such a system describes the logistic growth of a population. Prove that if
0 ≤ µ < 1/4 there is a unique initial datum x0 such that xn = x0 for all
n ∈N. What happens if µ ≥ 1/4?

17. An infinite sum of functions ∑+∞
n=1 fn(x) converges totally if the series

∑+∞
n=1 ‖ fn‖∞ is convergent. Prove that if ∑+∞

n=1 fn(x) converges totally then
∑+∞

n=1 fn(x) converges uniformly.
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Using the sup norm is by far the simplest way to measure the distance be-
tween two functions. On the other hand, this distance has the downside of
being sometime ‘too strong’. In many applications, convergence with respect
to weaker distance my be extremely useful, for examples based on integral
quantities. For instance, given two functions f and g on the interval [0, 1], we
may ask ourselves how much they differ in an integral sense by evaluating the
quantity

1∫
0

| f (x)− g(x)|2dx.

The above quantity (its square root, more precisely) has very likely all the
properties of a distance. Defining said quantity relies on the concept of inte-
gral of a function of real variables. We all are familiar with Riemann’s integral,
which therefore seems to be the natural candidate concept to use in this con-
text. However, we will see very soon that there is a major theoretical issue
with classical Riemann integration theory when we try to adapt it to the goals
of functional analysis. Hence, in this section we will introduce the Lebesgue
theory of integration, which will allow is to defined the so-called Lp spaces,
also called Lebesgue spaces.

We all know that there is a close interplay between integrals of functions
f : Rd → R and the way we measure sets in Rd. For example, if we define
the function f : A → R as f (x) ≡ 1, with a given A ⊂ R3, we expect that∫

A f (x)dx returns the 3-dimensional volume of the set A. Now, Riemann’s the-
ory of integrals relies on the so-called Peano-Jordan theory of measure, which
we will briefly recall here. Then, we shall introduce Lebesgue measure theory,
which is sort of a counterpart (on the measure side) of Lebesgue integral the-
ory.

3.1 Integrals and measures

We all are familiar with Riemann’s integration theory.

Given a bounded function f : [a, b] → R, Riemann’s idea to compute the
integral relies essentially on approximating the area of the subgraph of f (with
the convention that regions in which f is negative give a contribution with
negative sign) with piecewise constant functions, i.e. with functions which are
constant on intervals. The integral

∫ b
a h(x)dx of a piecewise constant function

h is trivially computed as the sum of areas of rectangles. We set

∫ b

a
f (x)dx .

= sup


b∫

a

h(x)dx : h ≤ f and h is piecewise constant

 ,
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and

∫ b

a
f (x)dx .

= inf


b∫

a

h(x)dx : h ≥ f and h is piecewise constant

 .

If
∫ b

a
f (x)dx =

∫ b
a f (x)dx we say that f is Riemann integrable, and define

b∫
a

f (x)dx =
∫ b

a
f (x)dx =

∫ b

a
f (x)dx.

The class of Riemann integrable functions contains e.g. continuous functions
and piecewise continuous functions.

Riemann’s integral can be extended also to functions defined on subsets of
Rd. We refer to [1].

Strictly related with integration is the way we measure sets. In one space
dimension, the measure of a set is (roughly speaking) the length of the set,
which reduces e.g. to b− a in the case of an interval [a, b]. In two dimensions
the measure of A ⊂ R2 is the area of A, in three dimensions the measure of
A ⊂ R3 is the volume of A. The goal of measure theory is to define the mea-
sure of elementary sets (intervals in one dimension, rectangles in two dimen-
sions, etc) and use them to define the measure of more and more complicated
sets, e.g. open sets, closed sets, etc.

3.1 fact. Let R ⊂ Rn be a rectangle, i.e. R is the Cartesian product of n intervals
of the form [a, b), (a, b], (a, b), [a, b]. The measure m(R) of a rectangle can be
easily computed as the produce of the sizes of said intervals. An elementary set
I ⊂ Rn is the finite union of rectangles. Every elementary set can be written as
the union of pairwise disjoint rectangles (easy exercise), i.e. I = R1 ∪ . . . ∪ Rm
with Ri ∩ Rj = ∅ if i 6= j. Hence, the measure of the elementary set I above
can be computed as

m(I) =
m

∑
i=1

m(Ri).

A classical way to extend the notion of measure in Rn to more complicated
sets leads to Peano-Jordan’s theory.

3.2 fact. In Peano-Jordan’s theory, a set is measurable if it can be well ap-
proximated by elementary sets from outside and from inside. More precisely,
let A ⊂ Rn be a bounded set. We set

m∗,PJ(A) = sup{m(I) : I is an elementary set and I ⊂ A} (inner measure)

m∗,PJ(A) = inf{m(I) : I is an elementary set and I ⊃ A} (outer measure)

A set A ⊂ Rn is Peano-Jordan measurable if m∗,PJ(A) = m∗,PJ(A). In this case
we denote the Peano-Jordan measure of A as mPJ(A) = m∗,PJ(A) = m∗,PJ(A).
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Peano-Jordan’s theory works well with sets with thin boundaries, namely
sets A with a boundary ∂A with m∗,PJ(∂A) = 0. Moreover, it fits well with
Riemann’s integration theory, in a sense which is better explained as follows.

3.3 example. Let f : [a, b] → [0,+∞) be Riemann integrable. Then, the sub-
graph of f

A = {(x, y) ∈ R2 : a ≤ x ≤ b , 0 ≤ y ≤ f (x)}

is Peano-Jordan measurable and

mPJ(A) =

b∫
a

f (x)dx.

Peano-Jordan’s and Riemann’s theories cover a fairly large class of sets
and functions respectively. However, these theories lack in being well suited
with respect to σ-additivity properties, i.e. they do not work well with count-
able unions of measurable sets. More precisely, consider a sequence of Peano-
Jordan measurable sets {Ek}+∞

k=1, Ek ⊂ Rn. In general, we are not guaranteed
that the union

⋃+∞
k=1 is Peano-Jordan measurable. This gap in the theory is only

seemingly harmless. Its consequences on more advanced mathematical theo-
ries involving integration are indeed very serious. Moreover, Peano-Jordan
theory cannot cover unbounded sets.

3.4 example. The set A = [0, 1] ∩ Q is countable. Write it as a sequences
A = {xk}k without repetitions. Clearly, each point has measure zero, therefore
m({xk}) = 0. We would naturally expect that

mPJ(A) = mPJ

(
+∞⋃
k=1

{xk}
)

=
+∞

∑
k=1

mPJ({xk}),

but this is false, since A is not even measurable according to Peano-Jordan
theory. We leave the proof of this claim as an exercise.

3.5 exercise. Let fn : [a, b] → R be a sequence of Riemann integrable func-
tions. Assume that fn → f uniformly. Prove that

lim
n→+∞

b∫
a

fn(x)dx =

b∫
a

f (x)dx.

In 1902, measure theory was greatly improved by Henri Lebesgue, who
formulated an extended version of Peano-Jordan’s theory which fixed the
above mentioned bugs.
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3.2 An overview of Lebesgue measure theory

3.6 definition. Let A ⊂ Rn be a bounded open set. We set

m(A) = sup {m(I) : I ⊂ A and I is an elementary set} .

Let K ⊂ Rn be a compact set. We set

m(K) = inf {m(I) : I ⊃ K and I is an elementary set} .

For an arbitrary bounded subset E ⊂ Rn we define the Lebesgue outer measure

m∗(E) = inf{m(A) : A ⊃ E and A is an open set},

and the Lebesgue inner measure

m∗(E) = sup{m(K) : K ⊂ E and K is a compact set}.

A bounded subset E ⊂ Rn is said to be Lebesgue measurable if m∗(E) =
m∗(E). If E ⊂ Rn is unbounded, we say that E is Lebesgue measurable if
E ∩ BR(0) is Lebesgue measurable for all R ≥ 0, and set

m(E) = lim
R→+∞

m(E ∩ BR(0))

(m(E) may be infinite!).

It can be easily proven that this concept of measurability satisfies the so
called Boolean closure, i. e. if E, F ⊂ Rn are measurable then so are E ∪ F,
E ∩ F, E \ F. Moreover, the empty set is measurable with m(∅) = 0, and Rn is
measurable with m(Rn) = +∞.

3.7 exercise. Prove that a bounded set E ⊂ Rn is Lebesgue measurable if and
only if for any ε > 0 there exist Kε ⊂ E ⊂ Aε, with Kε compact and Aε open,
such that m(Aε \ Kε) < ε.

As we expect, Lebesgue measure extends Peano-Jordan measures.

3.8 exercise. Let E ⊂ Rn be Peano-Jordan measurable. Prove that E is Lebesgue
measurable and that the two measures coincide. Hint: prove that

m∗,PJ(E) ≥ m∗(E) , m∗,PJ(E) ≤ m∗(E).

In measure theory, sets with zero measure are particularly important. We
say that a property holds almost everywhere in Rn if it holds outside a set with
zero Lebesgue measure.

3.9 exercise. Prove that if E ⊂ Rn satisfies m∗(E) = 0 then E is Lebesgue
measurable and m(E) = 0.

3.10 proposition. If E, F ⊂ Rn are measurable, then
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(a) E ⊂ F implies m(E) ≤ m(F),

(b) m(E ∪ F) ≤ m(E) + m(F),

(c) m(E ∪ F) = m(E) + m(F) if E and F are disjoint,

(d) m(E \ F) = m(E)−m(F) if E ⊃ F and m(F) < +∞.

Proof. Omitted.

As a consequence of (d) above, all bounded measurable sets have finite
Lebesgue measure.

We mentioned above about gaps with σ-additivity properties in Peano-
Jordan’s theory. The next theorem collects fundamental properties of Lebesgue
measure which marks a basic improvement in the theory.

3.11 theorem. Let {Ek}k be a sequence of measurable sets in Rn. Then,
⋂+∞

k=1 Ek
and

⋃+∞
k=1 Ek are Lebesgue measurable. Moreover,

(a) m
(⋃+∞

k=1 Ek
)
≤ ∑+∞

k=1 m(Ek) (countable subadditivity),

(b) m
(⋃+∞

k=1 Ek
)
= ∑+∞

k=1 m(Ek) if the Ek’s are pairwise disjoint (countable addi-
tivity),

(c) m
(⋃+∞

k=1 Ek
)
= limk→+∞ m(Ek) if Ek ⊂ Ek+1 for all k ∈ N (continuity of

Lebesgue measure w.r.t. increasing families of sets)

(d) m
(⋂+∞

k=1 Ek
)
= limk→+∞ m(Ek) if Ek ⊃ Ek+1 for all k ∈ N and m(E1) <

+∞ (continuity of Lebesgue measure w.r.t. decreasing families of sets).

Proof. Omitted.

3.12 example. Let Ek = [k,+∞) ⊂ R. Clearly, m([k,+∞)) = +∞ for all k. We
have

m

(
+∞⋂
k=1

Ek

)
= m(∅) = 0 6= +∞ = lim

k→+∞
m(Ek),

so the assumption m(E1) < +∞ is needed in point (d) of the previous Theo-
rem.

3.13 fact. Lebesgue measure is translation invariant. More precisely, given E ⊂
Rn a measurable set and given h ∈ Rn, the set Eh = {y = x + h : x ∈ E} is
measurable and one has m(Eh) = m(E).

3.14 example. In the example 3.4 we showed that the set E = Q ∩ [0, 1] is not
Peano-Jordan measurable. Due to Theorem 3.11 (b), E is actually Lebesgue
measurable, since

E =
+∞⋃
k=1

{xk}
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where {xk}+∞
k=1 is an enumeration (without repetitions) of the rational numbers

in [0, 1]. Therefore,

m(E) =
+∞

∑
k=1

m({xk}) = 0,

since all singletons {xk} have zero measure. Now, we left (b) Theorem 3.11

without a proof, but due to the importance of this example, let us prove that
E is Lebesgue measurable and has zero measure. Let us fix ε > 0. Let {xk}+∞

k=1
the enumeration of E introduced above. We have

E ⊂
+∞⋃
k=1

(
xk −

ε

2k , xk +
ε

2k

)
.

Now, we take for granted that

(a) Lebesgue outer measure is monotone, i.e. E ⊂ F implies m∗(E) ≤ m∗(F)
(easy exercise).

(b) Lebesgue outer measure is countably sub-additive, i.e. m∗
(⋃+∞

k=1 Ek
)
≤

∑+∞
k=1 m(Ek) (exercise).

Hence, we obtain

m∗(E) ≤
+∞

∑
k=1

m
((

xk −
ε

2k , xk +
ε

2k

))
= 2ε

+∞

∑
k=1

2−k = 2ε,

and since ε > 0 is arbitrary we obtain m∗(E) = 0, which proves the assertion.

Lebesgue’s theory has the advantage of providing a class of measurable
sets much larger than the one provided by Peano-Jordan’s theory. A famous
example due to Vitali shows, however, that there exists at least one subset of
R which is not Lebesgue measurable.

In the remaining sections we shall use the expression almost everywhere
for a property that holds everywhere but on a set of zero Lebesgue measure.
We observe also that Lebesgue measure depends on the dimension d of the
Euclidean space. Indeed, a segment with positive length has positive Lebesgue
measure in dimension one and zero Lebesgue measure in dimension two.
When necessary, we use the notation md(A) for the measure of a set A to
emphasize the dimension of the measure.

3.3 Lebesgue integral

Starting from the class of Lebesgue measurable sets, we introduce a class of
functions on Rd which turns out to be the most suitable setting on which
define a notion of integral. In what follows we adopt the notation R to denote
the extended real line [−∞,+∞], given by R∪ {−∞} ∪ {+∞}.

Let Ω ⊂ Rn, and let f : Ω→ R. We say that f is measurable in Ω if

for all α ∈ R, the set {x ∈ Ω : f (x) > α} is Lebesgue measurable.
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Such a definition is equivalent to require, for all α ∈ R, one of the following:

• for all α ∈ R, the set {x ∈ Ω : f (x) ≥ α} is Lebesgue measurable,

• for all α ∈ R, the set {x ∈ Ω : f (x) ≤ α} is Lebesgue measurable,

• for all α ∈ R, the set {x ∈ Ω : f (x) < α} is Lebesgue measurable,

• for all U ⊂ R open, the set {x ∈ Ω : f (x) ∈ U} is Lebesgue measurable.

Clearly, continuous functions are measurable. Given f , g measurable and
c ∈ R, one has that the functions f + g, c f , f g, f /g (with g 6= 0), max{ f , g},
min{ f , g}, f+, f−, | f | are measurable. Moreover, given a sequence { fk}k of
measurable functions, supk≥1 fk, infk≥1 fk, lim infk→+∞ fk, lim supk→+∞ fk, and
limk→+∞ fk are measurable functions.

3.15 definition. A simple function φ : Rn → R is a measurable function on
Rn which attains only a finite number of values. Let α1, . . . , αk ∈ R be those
values, and let Ej = {x ∈ Rn : φ(x) = αj} for j = 1, . . . , k. Then, φ can be
represented as

φ(x) =
k

∑
j=1

αj1Ej(x), (32)

where

1A(x) =

{
1 if x ∈ A
0 if x 6∈ A,

for a measurable set A.

We observe that the above representation (32) is unique if we assume
Ei ∩ Ej = ∅ for i 6= j and the constants αi without repetitions. 1A above is
called indicator function. The class of simple functions is closed under trivial
operations such as sum, difference, multiplication by a real number.

We now define the notion of integral for simple functions. Let φ : Rn → R

be a simple function which is bounded and zero outside a compact set of Rd.
Assume

φ(x) =
k

∑
j=1

αj1Ek (x).

Then, we set

∫
φ(x)dx =

k

∑
j=1

αjm(Ej).

The above definition is well posed, in the sense that it is independent of the
choice of the representation of φ as finite combination of indicator functions.
The integral of simple functions satisfies∫

(φ + λψ)dx =
∫

φdx + λ
∫

ψdx,
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for all φ, ψ simple and fort all λ ∈ R.

3.16 exercise. Let φ, ψ be simple functions. Assume φ ≤ ψ almost everywhere
on Rd. Prove that

∫
φ ≤

∫
ψ.

In Riemann’s theory, the class of integrable functions is determined by the
property of being well approximated by piecewise constant from above and
from below. This requirement in general is quite selective, as it takes some
nontrivial functions (such as the Dirichlet function) out of the set of integrable
functions. In Lebesgue’s theory, the minimal requirement of the function being
measurable is essentially enough in order to compute the integral.

3.17 exercise. Let f : Rd → [0,+∞) be measurable, bounded, and zero out-
side the set BM(0). Then, prove that there exist two sequences ψk, φk of simple
functions such that ψk(x) = φk(x) = 0 for x 6∈ BM(0), ψk ≤ f ≤ φk for all
k, and such that φk − ψk → 0 uniformly in Rd. Hint: let M > 0 such that
supx∈Rd f (x) ≤ M < +∞ and f (x) = 0 for all |x| ≥ M. For all n ∈ N and
k = 0, . . . , 2n consider the sets

Ek =

{
x ∈ Rd : M

k− 1
2n ≤ f (x) < M

k
2n

}
∩ BM(0),

and set ψn(x) = ∑2n

k=1 M k−1
2n 1Ek and φn(x) = ∑2n

k=1 M k
2n 1Ek . Prove that φn and

ψn satisfy the assertion.

As a consequence of the above exercise, given f : Rd → [0,+∞) be measur-
able, bounded, and zero outside the set BM(0), as a consequence of exercise
(3.16), one has∫

φkdx−
∫

φkdx =
∫
(φk−ψk)dx ≤

∫
‖φk−ψk‖∞dx ≤ m(BM(0))‖φk−ψk‖∞,

and the right hand side goes to zero as k→ +∞.
The above argument shows that, at least for measurable, nonnegative,

bounded functions which are zero outside a compact set, approximation of
the integral via simple functions works well both from outside and from be-
low. Thus, we can define a notion of integral in this class in either directions.
We choose to approximate from below.

3.18 definition (Lebesgue integral of a measurable function). Let f : Rd →
[0,+∞] be measurable. We set∫

f (x)dx = sup
{∫

φ(x)dx : φ is simple and φ ≤ f
}

.

Let f : Rd → [−∞,+∞] be measurable and assume that at least one between
f+ = max{ f , 0} and f− = max{− f , 0} have finite integral. Then we set∫

f (x)dx =
∫

f+(x)dx−
∫

f−(x)dx.
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A measurable function is called summable (or L1) if
∫
| f (x)|dx < +∞. For a

given measurable set E ⊂ Rd, we set∫
E

f (x)dx =
∫

f (x)1E(x)dx.

An elementary property which can be proven easily is monotonicity of the
Lebesgue integral, that is, if f ≤ g almost everywhere and

∫
f dx and

∫
gdx

make sense, we have∫
f dx ≤

∫
gdx .

The proof easily follows from the definition of Lebesgue integral and is left as
an exercise.

Before proving more elementary properties of the Lebesgue integral, we
need to prove a first result solving the limit-integral interchange property.

3.19 theorem (Beppo-Levi or monotone convergence). Let fk : Rd → [0,+∞]
be a sequence of measurable functions. Assume that

fn(x) ≤ fn+1(x) almost everywhere.

Then, there exists f : Rd → [0,+∞] measurable such that fn → f almost every-
where, and

lim
n→+∞

∫
fn(x)dx =

∫
f (x)dx.

Proof. Let A ⊂ Rd be such that fn(x) ≤ fn+1(x) for all x ∈ Rd \ A and
m(A) = 0. We set f̃n(x) to be equal to fn(x) on Rd \ A and 0 on A, so that f̃n
is monotone everywhere. We set

f (x) = sup
n∈N

f̃n(x) .

Since f̃n is measurable (exercise), then we get that f is also measurable. We ob-
serve that due to the monotonicity we have that limn→+∞

∫
fndx = limn→+∞

∫
f̃ndx

exists for sure. Moreover, since f̃n ≤ f for all n, we immediately get

lim
n→+∞

∫
fndx = sup

n∈N

∫
fndx ≤

∫
f dx .

To prove the opposite inequality, let ϕ be a simple function which is zero
outside a ball with ϕ ≤ f , without restriction ϕ ≥ 0. For a t ∈ (0, 1) we define
the (Lebesgue measurable) set

En =
{

x ∈ Rd : tϕ(x) ≤ f̃(x)
}

.
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We represent the simple function ϕ as

ϕ(x) =
N

∑
i=1

αi1Bi ,

for pairwise disjoint Bi’s and distinct αi’s. We claim that
⋃N

i=1 En = Rd. To see
this, let x ∈ Rd. Since ϕ(x) ≤ f (x), we have tϕ(x) < f (x). Since f̃n(x)→ f (x),
for some n ∈N we have tϕ(x) ≤ f̃n(x), that is x ∈ En. Now, for a fixed n,∫

Rd

f̃n(x)dx ≥
∫
En

f̃n(x)dx ≥ t
∫
En

ϕ(x)dx

= t
∫
En

N

∑
i=1

αi1Bi = t
N

∑
i=1

αim(Bi ∩ En) .

Hence,

sup
n

∫
Rd

f̃n(x)dx ≥ t
N

∑
i=1

αim(Bi ∩ En) .

Since the family Bj ∩ En is increasing with respect to n, by continuity of the
Lebesgue measure we can sent n→ +∞ on the right hand side and get

sup
n

∫
Rd

f̃n(x)dx ≥ t
N

∑
i=1

αim(Bi) = t
∫

Rd

ϕdx .

Due to the arbitrariness of t, we get

lim
n→+∞

fn(x)dx =
∫

Rd

ϕdx

for all simple functions ϕ ≤ f . By taking the sup with respect to ϕ we obtain
the desired inequality.

We now prove more elementaty properties.

3.20 proposition. Let f , g be measurable functions for which Lebesgue integral
makes sense.7 Let λ, µ ∈ R. Then,

•
∫
(λ f (x) + µg(x))dx = λ

∫
f (x)dx + µ

∫
g(x)dx.

•
∣∣∫ f (x)dx

∣∣ ≤ ∫ | f (x)|dx.

• If f ≥ 0, E ⊂ F and E, F are measurable, then
∫

E f (x)dx ≤
∫

F f (x)dx.

7According to the above definition, this means either f is nonnegative or one between f+ =
max{ f , 0} and f− = max{− f , 0} have finite integral.
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• If f ≥ 0 almost everywhere then

m({x ∈ Rd : f (x) ≥ λ}) ≤ 1
λ

∫
f (x)dx.

The proof is omitted and left as an exercise. Notice that Beppo-Levi is
needed in the linearity property.

As expected, Lebesgue integral extends Riemann integral, i.e. if f is Rie-
mann integrable then it is Lebesgue measurable and the two integrals coin-
cide. This can be seen as a simple exercise by noticing for example that simple
functions contain piecewise constant functions as a subset. On the other hand,
there are functions which are Lebesgue integrable but not Riemann integrable,
for example

f (x) = 1Q∩[0,1],

the details are left as an exercise.
We now state some fundamental theorems regarding the Lebesgue inte-

gral.

3.21 theorem (Fubini). Let f (x, y) be a summable function on Rn ×Rm. Then,

(i) The function Rn 3 x 7→ f (x, y) is summable on Rn for almost all y ∈ Rm.

(ii) The function Rm 3 y 7→
∫

f (x, y)dx is summable on Rm and we have∫
Rn+m

f (x, y)dxdy =
∫

dy
∫

f (x, y)dx. (33)

If f is nonnegative and not necessarily summable, the same conclusion of (33)
holds if one of the three integrals∫

Rn+m

f (x, y)dxdy,
∫

dy
∫

f (x, y)dx,
∫

dx
∫

f (x, y)dy

is finite.

The proof is omitted.

3.22 exercise. Let f : Rd → [−∞,+∞] be a measurable function. Assume∫
E

f (x)dx = 0

for all measurable sets E ⊂ Rd. Prove that f = 0 almost everywhere.

The property proven for the Riemann integral in exercise 3.5 is a very im-
portant one. It is called limit-integral exchange property. A downside of Riemann
integration is that such a property only holds in general under the quite strict
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assumption that the sequence fn converges uniformly. The most natural class
in which we would like to investigate such a property for Lebesgue integra-
tion is the class of function sequences fn : Rd → R which are measurable and
converge almost everywhere to some f : Rd → R, i.e. such that fn(x) → f (x) as
n→ +∞ for all x ∈ Rd \ A with m(A) = 0.

A first case in which the property is valid is when the sequence is mono-
tone increasing almost everywhere, as proven in Beppo-Levi’s theorem.nIn
general, when the monotonicity property is not required for fn the sequence
does not necessarily converge almost everywhere, and the above limit ex-
change property is not necessarily true. However, under the assumption that
the sequence is nonnegative, the following property can be proven.

3.23 theorem (Fatou’s lemma). Let fk : Rd → [0,+∞] be a sequence of measur-
able functions. Then∫ (

lim inf
n→+∞

fn(x)
)

dx ≤ lim inf
n→+∞

∫
fn(x)dx.

Proof. We set gn(x) = infk≥n fk(x) for all n ∈N. Clearly, we have

gn(x) ≤ gn+1(x) for all n ∈N and for all x ∈ Rd.

Therefore, we can apply Beppo-Levi’s theorem and get

lim
n→+∞

∫
gn(x)dx =

∫ (
lim

n→+∞
gn(x)

)
dx.

Since gn(x) ≤ fn(x) for all n ∈N, we get∫ (
lim

n→+∞
gn(x)

)
dx ≤ lim inf

n→+∞

∫
fn(x)dx.

The integrand in the left hand side above is lim infn→+∞ fn(x).

The following examples show that the strict inequality in Fatou’s lemma
occurs very often.

3.24 example (Concentration). Let fn : R→ R defined by

fn(x) = n1[0,1/n](x).

The sequence fn converges almost everywhere to f = 0. Moreover, it is easily
seen that∫

R

fn(x) = 1 for all n ∈N.

Hence

0 =
∫

0dx < lim inf
n→+∞

∫
R

fn(x)dx = 1.
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3.25 example (Travelling wave). Let fn : R→ R defined by

fn(x) = 1[n,n+1](x).

The sequence fn converges almost everywhere to f = 0. Moreover, it is easily
seen that∫

R

fn(x) = 1 for all n ∈N.

Hence

0 =
∫

0dx < lim inf
n→+∞

∫
R

fn(x)dx = 1.

The following theorem provides a quite general sufficient condition which
removes the possibility that mass can be concentrated to one point or escape
at infinity as it does in the previous examples.

3.26 theorem (Lebesgue’s dominated convergence). Let fk : Rd → [−∞,+∞]
be a sequence of measurable functions. Suppose that

(i) There exists a measurable function f : Rd → [−∞,+∞] such that fn → f
almost everywhere.

(ii) There exists a summable function g : Rd → [−∞,+∞] such that | fn(x)| ≤
g(x) for all n ∈N and for almost every x ∈ Rd.

Then, ∫
f (x)dx = lim

→+∞

∫
fn(x)dx.

Proof. For all n ∈N, let

hn(x) = g(x)− fn(x).

Since hn ≥ 0 almost everywhere, we can apply Fatou’s lemma and get∫ (
lim inf
n→+∞

g(x)− fn(x)
)

dx =
∫ (

lim inf
n→+∞

hn(x)
)

dx

≤ lim inf
n→+∞

∫
hn(x)dx = lim inf

n→+∞

∫
(g(x)− fn(x))dx,

and since
∫

g(x)dx < +∞ we can use trivial properties of lim inf and lim sup
and get∫

f (x)dx ≥ lim sup
n→+∞

∫
fn(x)dx. (34)

We now set

Hn(x) = g(x) + fn(x),
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and since Hn ≥ 0 almost everywhere we get by Fatou’s lemma∫ (
lim inf
n→+∞

g(x) + fn(x)
)

dx =
∫ (

lim inf
n→+∞

Hn(x)
)

dx

≤ lim inf
n→+∞

∫
Hn(x)dx = lim inf

n→+∞

∫
(g(x) + fn(x))dx,

which implies∫
f (x)dx ≤ lim inf

n→+∞

∫
fn(x)dx. (35)

(34) and (35) imply

lim sup
n→+∞

∫
fn(x)dx ≤

∫
f (x)dx ≤ lim inf

n→+∞

∫
fn(x)dx,

and the assertion is proven since

lim inf
n→+∞

∫
fn(x)dx ≤ lim sup

n→+∞

∫
fn(x)dx.

3.4 Lp spaces

In this subsection we introduce one of the main classes of Banach spaces used
in functional analysis, i. e. the Lp spaces. They are constructed as function
spaces on Rd, and their theory makes use of the Lebesgue measure-integration
theory developed above.

The theory we develop in this chapter will be defined for functions on
Rd with values on R, but everything can be easily generalised to the case of
functions with values on C.

3.27 definition. Let p ∈ [1,+∞), and let Ω ⊂ Rn be a Lebesgue measurable
set. For a measurable function f : Ω→ R we define the Lp norm of f on Ω as
the (finite or infinite) number

‖ f ‖Lp(Ω)
.
=

∫
Ω

| f (x)|pdx

1/p

.

Moreover, we set

C .
= {α ∈ R : | f (x)| ≤ α almost everywhere on Ω}.

The L∞ norm of f (also called the essential supremum of f ) is defined as

‖ f ‖L∞(Ω) = inf C.

The essential supremum of | f | is the minimum essential upper bound for | f |,
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namely the minimum α such that | f | ≤ α almost everywhere. It is easily seen
that, in general

‖ f ‖L∞ ≤ sup
x∈E
| f (x)|,

and very simple examples can be constructed in which the strict inequality
holds above (basically we get a strict inequality anytime the f achieve its
supremum f on a set of measure zero, and it is bounded above by a value
strictly less than f elsewhere).

3.28 exercise. Prove that if f : Rd → R is continuous then ‖ f ‖L∞(Rd) =

supx∈Rd | f (x)|.

3.29 remark. A simple consequence of the above definition is that

| f (x)| ≤ ‖ f ‖L∞(E) almost everywhere on E.

To see this, for all k ∈N let

Ck = {x ∈ E : | f (x)| ≤ ‖ f ‖L∞ +
1
k
}.

Clearly, m(E \ Ck) = 0 for all k ∈N, because, for all k ∈N, the value ‖ f ‖L∞ +
1
k is an upper bound for | f | almost everywhere. Hence, m (

⋃
k∈N(E \ Ck)) = 0,

and ⋃
k∈N

(E \ Ck) ⊃ E \ {x ∈ E : | f (x)| ≤ ‖ f ‖L∞},

which implies

m (E \ {x ∈ E : | f (x)| ≤ ‖ f ‖L∞}) = 0,

and therefore the assertion is proven.

Clearly, we would like to define a norm by means of the Lp and L∞ norms.
The problem is that, in general, ‖ f ‖Lp = 0 does not imply f ≡ 0, which is
one of the axioms of a norm. Indeed, for all p ≥ 1 the statement ‖ f ‖Lp(E) = 0
only implies that | f (x)| 6= 0 almost everywhere on E, but f could still be
nonzero on a set of null measure. We will see in a few pages how to bypass
this problem.

Let p ∈ [1,+∞]. We define the conjugate of p is the number p′ defined by

1
p
+

1
p′

= 1,

with the convention that 1/ + ∞ = 0. In particular, 1 is the conjugate of +∞
and vice versa.

3.30 exercise (Young’s inequality). Let p ∈ [1,+∞) and let p′ be its conjugate.
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Let a, b ≥ 0 be two positive numbers. Then,

ab ≤ ap

p
+

bp′

p′
.

Solution. If ab = 0 there is nothing to prove. Assume a > b > 0. Set A = ap

and B = bp′ . We need to prove that

A1/pB1/p′ ≤ A
p
+

B
p′

.

Multiplication by 1/B makes the above inequality equivalent to

1
p

(
A
B

)
+

1
p′
≥
(

A
B

)1/p

where we have used 1
p′ − 1 = − 1

p . Now, set t = A
B ≥ 1. The above becomes

equivalent to proving that

1
p

t +
1
p′
≥ t1/p for all t ≥ 1.

But the function φ(t) = 1
p t + 1

p′ − t1/p satisfies φ(1) = 0, φ′(t) = 1
p −

1
p t

1
p−1,

which is ≥ 0 for t ≥ 1. Therefore, φ(t) ≥ 0 for all t ≥ 1, which proves the
assertion.

3.31 theorem (Hölder inequality). Let f , g : E→ R be measurable functions, and
let p, q ∈ [1,+∞] be conjugate. Then,

‖ f g‖L1(E) ≤ ‖ f ‖Lp(E)‖g‖Lq(E).

Proof. If p = 1 and q = +∞, we have

‖ f g‖L1(E) =
∫
E

| f (x)g(x)|dx ≤ ‖g‖L∞

∫
| f (x)|dx = ‖g‖L∞‖ f ‖L1 ,

where the first inequality is justified by the fact that g can be redefined on a
set of measure zero in a way that g ≤ ‖g‖L∞ everywhere, and this does not
affect the integral.

In the general case p > 1, the statement is trivial if either f or g are zero
almost everywhere. Otherwise, we clearly have ‖ f ‖Lp > 0 and ‖g‖Lq > 0. For
a fixed α > 0 we have

| f (x)g(x)| =
∣∣∣∣ f (x)

α

∣∣∣∣ |αg(x)| ≤ 1
p

∣∣∣∣ f (x)
α

∣∣∣∣p + 1
q
|αg(x)|q ,

where we have used Young’s inequality (Exercise 3.70). By integrating the
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above inequality on E we get

‖ f g‖L1(E) ≤
1
p

1
αp ‖ f ‖p

Lp(E) +
1
q

αq‖g‖q
Lq(E).

We now choose α such that the two terms on the above right hand side are
equal, namely

α :=
‖ f ‖

1
q
Lp

‖g‖
1
p
Lq

,

which yields

‖ f g‖L1(E) ≤
1
p
‖g‖Lq

‖ f ‖p/q
Lp

‖ f ‖p
Lp +

1
q
‖ f ‖Lp

‖g‖q/p
Lq

‖g‖q
Lq ,

and the definition of p and q implies the last term above equals ‖ f ‖Lp‖g‖Lq .

3.32 remark. Hölder inequality can be also rephrased as follows:

∫
E

| f (x)|α|g(x)|βdx ≤

∫
E

| f (x)|dx

α∫
E

|g(x)|dx

β

,

provided α + β = 1.

3.33 exercise (Discrete Hölder inequality). Let

x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn,

and let p, q ∈ [1,+∞) with 1/p + 1/q = 1. Prove that

n

∑
i=1
|xiyi| ≤

(
n

∑
i=1
|xi|p

)1/p ( n

∑
i=1
|yi|q

)1/q

.

3.34 theorem (Minkowski’s inequality). Let f , g : E → R be measurable func-
tions. Let p ∈ [1,+∞]. Then,

‖ f + g‖Lp(E) ≤ ‖ f ‖Lp(E) + ‖g‖Lp(E).

Proof. The case p = +∞ is trivial, since for all x ∈ E one has

| f (x) + g(x)| ≤ | f (x)|+ |g(x)|,

and the right hand side is controlled by ‖ f ‖L∞ + ‖g‖L∞ almost everywhere on
E. This implies the assertion.

The case p = 1 is straightforward.
Let p ∈ (1,+∞). The statement is trivially satisfied if either ‖ f ‖Lp or ‖g‖Lp
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equals +∞. Therefore, assume the are both finite. We observe that

| f (x) + g(x)|p ≤ | f (x) + g(x)|p−1(| f (x)|+ |g(x)|) (36)

≤ | f (x) + g(x)|p−1| f (x)|+ | f (x) + g(x)|p−1|g(x)|. (37)

Integrating on E yields, via the Hölder inequality,∫
E

| f (x) + g(x)|p−1| f (x)|dx

≤

∫
E

| f (x) + g(x)|pdx


p−1

p
∫

E

| f (x)|pdx

 1
p

= ‖ f + g‖p−1
Lp ‖ f ‖Lp .

By performing the same manipulation on the last term in (36), we get∫
E

| f (x) + g(x)|pdx = ‖ f + g‖p
Lp ≤ ‖ f + g‖p−1

Lp (‖ f ‖Lp + ‖g‖Lp) ,

which proves the assertion.

Now, clearly the Lp norm verifies

• ‖ f ‖Lp ≥ 0,

• ‖λ f ‖Lp = |λ|‖ f ‖Lp ,

• ‖ f + g‖Lp ≤ ‖ f ‖Lp + ‖g‖Lp ,

in the class of measurable functions on which the above quantities are finite.
But this is not enough to make ‖ · ‖Lp a norm on such space, because in general
‖ f ‖Lp = 0 does not imply f ≡ 0. Please notice that the underlying linear space
on which we are defining (or trying to define) a norm here is the space of
measurable functions on Rd such that ‖ f ‖Lp < +∞ (verify as an exercise that
such a set is a linear space).

3.35 fact. Let us recall a simple fact from set theory. Given a set X, an equiva-
lence on X is a subset E of X× X such that

(i) (x, x) ∈ E for all x ∈ E,

(ii) (x, y) ∈ E if and only if (y, x) ∈ E,

(iii) If (x, y) and (y, z) are in E, then (x, z) ∈ E.

We use the notation x ∼ y to denote (x, y) ∈ E. Given an equivalence on X,
and given x ∈ X, we set

[x] = {y ∈ X : x ∼ y},

called the equivalence class of x. We call X/ ∼ the set of all equivalence classes
for the relation E. Such set is called the quotient set.
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3.36 exercise. Let X be a real (or complex) linear space. Let ∼ be an equiva-
lence on X. Given [x], [y] ∈ X/ ∼ and λ, µ ∈ R, set

λ[x] + µ[y] = [λx + µy] ∈ X/ ∼ .

Prove that such a definition is well posed (i.e. the class [x] + [y] does not
depend on the choice of the vectors x, y. Prove that X/ ∼ is a real (or complex)
linear space with the above defined operation.

3.37 definition. Let E ⊂ Rd be a measurable set and p ∈ [1,+∞]. We call
Lp(E) the set of measurable functions f : E → R such that ‖ f ‖Lp < +∞.
Now, we set the following equivalence on Lp(E). Let f , g ∈ Lp(E). We say
that f ∼ g if f (x) = g(x) for almost every x ∈ E.8 We set

Lp(E) = Lp(E)/ ∼,

i. e. Lp(E) is the quotient (vector) space of Lp(E) through the relation ∼9. For
a given equivalence class [ f ] ∈ Lp(E), we define the norm of [ f ] as ‖ f ‖Lp(E)
for an arbitrary representant f ∈ [ f ]. From now on, by abuse of notation, we
shall confuse [ f ] and its representant f . The space Lp(E) is the Lp space on E.

3.38 exercise. Prove that the norm of f ∈ Lp(E) is well defined.

3.39 remark. Clearly, the Lp norm on Lp(E) is now a norm, since all the
‘good’ properties proven above are easily inherited by the norm on the quo-
tient space, and furthermore one has ‖ f ‖Lp = 0 implies f = 0 almost every-
where, hence [ f ] = 0. Therefore, Lp(E) is a normed space.

We shall say that a sequence fn ∈ Lp(E) converges in Lp to f ∈ Lp if
‖ fn − f ‖Lp → 0 as n→ +∞.

We now prove that Lp spaces are complete, i.e. they are Banach spaces.

3.40 theorem (Riesz-Fisher theorem). Let E ⊂ Rd be a measurable set and
p ∈ [1,+∞]. Then the space Lp(E) is Banach space. Moreover, if p ∈ [1,+∞) and
{ fn}n∈N is a Cauchy sequence in Lp(E), then there exist two functions f , h ∈ Lp(E)
and a subsequence fnk of fn such that

(a) | fnk (x)| ≤ h(x) almost everywhere on E,

(b) fnk → f almost everywhere on E.

Proof. Postponed.
The theorem above is quite important. Apart from stating that Lp spaces

are complete, it investigates the interplay between Lp convergence and al-
most everywhere convergence. More precisely, it says that if a sequence fn
converges in Lp to some f , then fn has a subsequence that converges almost

8Prove that ∼ is actually an equivalence!
9All the vector space operations on Lp(E) are inherited by the quotient space by considering

operations between representant. For instance, given [ f ], [g] ∈ Lp, [ f ] + [g] is the equivalence class
of [ f + g]. Prove that such operation is well defined. Define similarly λ[ f ] for some λ ∈ R.
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everywhere. The next example shows that, in general, convergence in Lp does
not imply convergence almost everywhere of the whole sequence.

3.41 example. Let fn : [0, 1] → R be defined by fn(x) = 0, f1(x) = 1[0,1/2)(x),
f2(x) = 1[1/2,1](x), and for general k ≥ 1, k ∈ N, and for all n = 2k−1 +

1, . . . , 2k,

fn(x) = 1[n2−k−1,n2−k)(x).

One can easily see that the L1([0, 1]) norm of fn tends to zero as n → +∞,
so that fn → 0 in L1([0, 1]). However, for every x ∈ [0, 1], the set of integers
n such that fn(x) = 1 is infinite, and therefore f (x) cannot converge to zero.
This is true for every x ∈ [0, 1]. Therefore, fn converges to zero on the empty
set, so it does not converge to zero on a set of measure 1. Hence, it is not true
that fn converges to zero almost everywhere.

On the other hand, does almost everywhere convergence imply Lp conver-
gence? This is also not true in general, as one can deduce from the example
fn : R→ R,

fn(x) = 1[n,n+1)(x),

in which fn converges to zero almost everywhere but not in L1 (Exercise).

3.42 definition (Support of a continuous function). Let Ω ⊂ Rd be an open
set. Let f ∈ C(Ω)10. The support of f in Ω is the set

spt( f ) = {x ∈ Ω : f (x) 6= 0}.

If spt( f ) is compact, we say that f is compactly supported. The space of com-
pactly supported functions on Ω is denoted by Cc(Ω). We notice that Cc(Ω) ⊂
Cb(Ω) ⊂ C(Ω).

We now recall the notion of distance between sets.

3.43 definition. Let x ∈ Rd, A, B ⊂ Rd. We set

d(x, A) = inf{‖x− y‖ : y ∈ A},

and

d(A, B) = inf{‖x− y‖ : x ∈ A, y ∈ B}.

Here ‖ · ‖ is the Euclidean norm on Rd.

3.44 exercise. The distance function defined above has the following proper-
ties.

• d(A, B) = infx∈A d(x, B) = infy∈B d(x, A) (exercise).

10We recall that C(Ω) is the space of continuous functions from Ω to R
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• The map Rd 3 x 7→ d(x, A) is continuous, indeed, the map is Lipschitz
continuous with Lipschitz constant 1, i. e.

|d(x, A)− d(y, A)| ≤ ‖x− y‖.

Left as an exercise. Hint: take an arbitrary point z ∈ A and use the
triangular inequality.

• If K, C ⊂ Rd with K compact, C closed, and K ∩C = ∅, then d(K, C) > 0
(exercise).

• Let A ⊂ Rd and δ > 0. Set

Aδ = {x ∈ Rd : d(x, A) ≤ δ}.

Prove that A ⊂ Aδ and Aδ is closed. Moreover, if K ⊂ Rd is compact
then Kδ is compact. This is an easy exercise.

• As a consequence of the above exercises, let Ω ⊂ Rd be open, and let
K ⊂ Ω be compact. Let δ0 = d(K, Rd \Ω). Clearly, δ0 > 0. Hence, for all
δ < δ0 one has

K ⊂
◦

Kδ ⊂ Kδ ⊂ Ω.

The next proposition is a special case of a more general result in topology
known as Urysohn’s lemma11.

3.45 proposition. Let K ⊂ Ω ⊂ Rd, with K compact and Ω open. Then, there
exists ϕ ∈ Cc(Ω) such that ϕ(x) = 1 for all x ∈ K and 0 ≤ ϕ(x) ≤ 1 for all x ∈ Ω.

Proof. Let δ such that 0 < δ < d(K, Rd \Ω). Set

ϕ(x) =
d(x, Rd \ Kδ)

d(x, Rd \ Kδ) + d(x, K)
.

Clearly, d(x, Rd \ Kδ) + d(x, K) 6= 0 for all x ∈ Ω. Indeed, if d(x, K) = 0 then
x ∈ K, and therefore d(x, y) ≥ δ for all y ∈ Rd \ Kδ. Moreover, ϕ(x) ∈ [0, 1] for
all x ∈ Ω, and x ∈ K implies d(x, K) = 1 and ϕ(x) = 1. Finally, ϕ(x) 6= 0 only
if d(x, Rd \ Kδ) 6= 0, which is equivalent to x ∈ Kδ. Hence, the support of ϕ is
compact in Ω.

In what follows we shall denote with S(Ω) the space of simple functions
on Ω which are zero outside a bounded set.

3.46 theorem (Density of Cc in Lp). Let Ω ⊂ Rd be an open set.

(i) The space S(Ω) is dense in Lp if p ∈ [1,+∞).

(ii) Cc(Ω) is dense in Lp(Ω) if p ∈ [1,+∞).

11http://en.wikipedia.org/wiki/Urysohn’s_lemma
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(iii) Cc(Ω) is not dense in L∞(Ω). S(Ω) is dense in L∞(Ω) if Ω is bounded.

Proof. Proof of (i). Let f ∈ Lp(Ω). We have to construct a sequence of simple
functions φj ∈ S(Ω) with ‖φj− f ‖Lp → 0 as j→ +∞. Assume first that f ≥ 0.
We know from Exercise 3.17 that there exists a sequence of nonnegative simple
functions φj ∈ S(Ω) with φj ↗ f almost everywhere in case f is zero outside
a bounded set. In the general case of f ≥ 0, for a given n ∈ N there exists
a sequence φn,j ↗ f 1Bn(0). Consider the diagonal sequence φj,j ∈ S(Ω). Let
ε > 0. For almost every x ∈ Ω one has x ∈ Bj(0), and hence | f (x)− φj,j| ≤ ε
for j large enough. Hence, the claim is true also for a general f ≥ 0. Now, this
implies

0 ≤ | f − φj|p ≤ | f |p,

almost everywhere on Ω. Therefore, we can apply Lebesgue dominated con-
vergence theorem 3.26 to get∫

| f (x)− φj(x)|pdx → 0 as j→ +∞.

The general case f sign changing can be solved by splitting f = f+ − f−, con-
structing sequences of simple functions as above for f+ and f−, and applying
the previous step.

Proof of (ii). Let f ∈ Lp(Ω) and let ε > 0. Due to (i) there exists a simple
function φ on Ω such that ‖ f − φ‖Lp ≤ ε

2 . The proof will be completed once
we find a continuous function g on Ω such that ‖g− φ‖Lp ≤ ε

2 . Assume first
that φ = α1F for some measurable bounded set F ⊂ Ω and some α ∈ R. Fix
σ > 0. Let K ⊂ F ⊂ A, K compact and A open, such that m(A)−m(K) < σ.
From Proposition 3.45, we know that there exists a function g̃ ∈ Cc(A) such
that 0 ≤ g̃ ≤ 1 and g̃ = 1 on K. Let g = αg̃. We have

‖g− φ‖p
Lp =

∫
Ω

|g(x)− φ(x)|pdx =
∫
Ω

|αg̃− α1F|pdx ≤ αpm(A \ K) ≤ αpσ,

and choosing σ = (ε/2α)p one has ‖g− φ‖Lp ≤ ε
2 . Assume now that

φ =
N

∑
j=1

αj1Fj ,

with Fj measurable and bounded sets. From the previous case we can find
continuous functions gj such that

‖gj − 1Fj‖Lp ≤ ε

2 ∑N
j=1 |αj|

.
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Set g = ∑N
j=1 αjgj, we have

‖g− φ‖Lp = ‖
N

∑
j=1

αj(gj − 1Fj)‖Lp ≤
N

∑
j=1
‖αj|gj − 1Fj |‖Lp ≤ ε

2
,

and the assertion (ii) is proven.
Proof of (iii). Cc(Ω) cannot be dense in L∞(Ω). Indeed, take f ∈ L∞(Ω)

discontinuous at one point. The density property would imply that there ex-
ists a sequence of continuous functions f j on Ω that converge in L∞ to f .
But for continuous functions the convergence in L∞ is equivalent to the uni-
form convergence, and this is in contradiction with a well known convergence
property of sequences of functions.

If Ω is bounded, then the statement that simple functions are dense in L∞

is an immediate consequence of exercise 3.17.

3.47 theorem (Separability of Lp). Lp(Ω) is separable if p ∈ [1,+∞). L∞(Ω) is
not separable.

Proof. Case p < +∞. For simplicity let us assume Ω = Rd (the general case is
a simple consequence of this special case). Let R denote the countable family
of sets in Rd of the form R = Πd

k=1(ak, bk) with ak, bk ∈ Q. Let E denote the
vector space over Q generated by the functions {1R}R∈R, that is, E consists of
all finite linear combinations with rational coefficients of indicator functions
of sets in R. It is easily seen that E is a countable set.

We claim that E is dense in Lp(Rd). Let f ∈ Lp(Rd) and let ε > 0. From
Theorem 3.46 there exists f1 ∈ Cc(Rd) such that ‖ f − f1‖Lp ≤ ε. Let R ∈ R be
any cube containing the support of f1. It is easy to construct a function f2 ∈ E
such that ‖ f1− f2‖Lp ≤ ε and f2 vanishes outside R. Indeed, it suffices to split
R into small cubes of R where the oscillation of f1 is less than an arbitrary
δ > 0 ( f1 is uniformly continuous on R!). Therefore we have

‖ f1 − f2‖Lp ≤ ‖ f1 − f2‖L∞ m(R)1/p < δm(R)1/p.

We conclude that ‖ f − f2‖Lp < 2ε provided δ > 0 is chosen so that δm(R)1/p <
ε.

Case p = +∞. If we prove that there exists a family of open balls in L∞(Ω)
which are pairwise disjoint and with an uncountable cardinality, the proof
will be completed. Indeed, if such property is satisfied, any dense subset S
in L∞ should have at least one element in each of the above open balls, and
this makes it impossible for S to be countable. Now, given two open balls
B, B′ ⊂ Ω, assuming that B 6= B′, one has

‖1B − 1B′‖L∞ = 1,

and the proof is an easy exercise. Now, for a given ball B ⊂ Ω, set

UB = {g ∈ L∞ : ‖g− 1B‖L∞ <
1
2
}.
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Clearly, the family

U = {UB : B is an open ball in Ω}

is more than countable, and every two distinct elements in U are disjoint. This
proves the assertion.

3.48 remark. Let Ω ⊂ Rd be open, and let p, q ∈ [1,+∞] with p ≤ q. Is there
any relation between Lp and Lq? More presicely, is one of the two spaces a
subset of the other one? In general the answer is negative. As an example,
let p = 1 and q = 2, and let Ω = (0,+∞) ⊂ R. Take f (x) = 1

1+x . Clearly,
f 6∈ L1(Ω), where as f ∈ L2(Ω). Now, let g(x) = 1√

x 1(0,1). Clearly, g ∈ L1(Ω)

but g 6∈ L2(Ω). Hence, L1(Ω) is not a subset of L2(Ω) and L2(Ω) is not a
subset of L1(Ω).

On the other hand, if m(Ω) < +∞, the Lp spaces are ordered. Indeed, let
p ≤ q: then Lq(Ω) ⊆ Lp(Ω). To see this, assume first q < +∞. We compute∫
Ω

| f |pdx =
∫
| f |≥1

| f |pdx+
∫
| f |<1

| f |pdx ≤
∫
| f |≥1

| f |qdx+m(Ω) ≤
∫
| f |qdx+m(Ω),

and hence ‖ f ‖Lq < +∞ implies ‖ f ‖Lq < +∞. Now, let us consider the case
q = +∞. We have∫

Ω

| f |p ≤ ‖ f ‖p
L∞ m(Ω),

and this proves the assertion.

Having defined the new family of functional spaces Lp(Ω) for p ∈ [1,+∞]
allows to consider a new notion of convergence for sequences of functions.
Given Ω ⊂ Rd a measurable set, we have that Lp(Ω) is a complete normed
space, i.e. a Banach space. As such, it encompasses a notion of convergence.
A sequence fn ∈ Lp(Ω) converges to f in Lp if ‖ fn − f ‖Lp → 0 as n → +∞.
The above remark shows that there is no relationship between convergence in
Lp(Ω) and convergence in Lq(Ω) for p 6= q unless Ω has finite measure. In this
case, the convergence in L1 is weaker than any other Lp convergence, whereas
the L∞ one is the strongest. The uniform convergence is stronger than the L∞

convergence on an arbitrary measurable set Ω (even if Ω is unbounded).

3.5 Convolution, regularisation and Lp
loc spaces.

We first define the convolution product of a function f ∈ L1(Rd) with a func-
tion g ∈ Lp(Rd).

3.49 theorem (Young). Let f ∈ L1(Rd) and g ∈ Lp(Rd) with p ∈ [1,+∞]. Then,
for almost every x ∈ Rd the function y 7→ f (x− y)g(y) is summable on Rd and we
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define

( f ∗ g)(x) =
∫

Rd

f (x− y)g(y)dy .

In addition f ∗ g ∈ Lp(Rd) and we have

‖ f ∗ g‖Lp(Rd) ≤ ‖ f ‖L1(Rd)‖g‖Lp(Rd) .

Proof. The conclusion is trivial if p = +∞. We now consider the case p = 1.
Set F(x, y) = f (x− y)g(y). For a.e. y ∈ Rd

∫
Rd

|F(x, y)|dx = |g(y)|
∫

Rd

| f (x− y)|dy = |g(y)|‖ f ‖L1(Rd) < +∞ .

Moreover,∫
Rd

dy
∫

Rd

|F(x, y)|dx = ‖g‖L1(Rd)‖ f ‖L1(Rd) < +∞ .

From Fubini’s theorem we get that F ∈ L1(Rd×Rd) and that we can exchange
the order of integration to obtain the desired assertion.

Let us now consider the case p > 1. From the previous case, for almost
every x ∈ Rd the function

y 7→ | f (x− y)||g(y)|p

is summable, that is

y 7→ | f (x− y)|1/p|g(y)|

belongs to Lp(Rd). Hence, we apply Hoelder’s inequality to obtain that the
function

y 7→ | f (x− y)||g(y)| = | f (x− y)|1/p′ | f (x− y)|1/p|g(y)|

belongs to L1(Rd) and

∫
Rd

| f (x− y)||g(y)|dy ≤ ‖ f ‖1/p′

L1(Rd)

∫
Rd

| f (x− y)||g(y)|pdy

1/p

,

which implies

| f ∗ g(x)|p ≤ ‖ f ‖p/p′

L1(Rd)
(| f | ∗ |g|p)(x) .
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The first case then implies the left hand side is summable and

‖ f ∗ g‖Lp(Rd) ≤ ‖ f ‖p/p′

L1(Rd)
‖ f ‖L1(Rd)‖g‖

p
Lp(Rd)

which implies the assertion.

In the sequel we shall denote

f̌ (x) = f (−x).

3.50 remark. Let f ∈ L1(Rd), g ∈ Lp(Rd), and h ∈ Lp′(Rd). Then we have∫
Rd

( f ∗ g)hdx =
∫

Rd

g( f̌ ∗ h)dx .

To prove this, let

F(x, y) = f (x− y)g(y)h(x)

which belongs to L1(Rd ×Rd) because∫
Rd

|h(x)|
∫

Rd

| f (x− y)||g(y)|dy < +∞

in view of Hoelder’s inequality and the previous Theorem. Moreover,∫
Rd

( f ∗ g)(x)h(x)dx =
∫

Rd

dx
∫

Rd

F(x, y)dy =
∫

Rd

dy
∫

Rd

F(x, y)dx =
∫

Rd

g(y)( f̌ ∗ h)(y)dy .

We now want to refine our concept of support for Lp functions. The one
we have defined so far only applies to continuous functions. The problem
with Lp space is that this is a set of equivalence classes, therefore the usual
definition does not apply. As an example, consider the indicator function of
the set D = [0, 1] ∩Q. The support of this function with the usual definition
would be [0, 1], because the latter is the closure of D. However, this function
is almost everywhere equal to zero, and the support of zero is the empty set.
Hence, this definition is not well posed. To bypass this problem, we proceed
as follows.

Let f : Rd → R be any function. Consider the family {ωi}i∈I of all open
sets on which f = 0 almost everywhere. Set ω =

⋃
i∈I ωi. We claim that

f = 0 almost everywhere on ω. To see this, consider a countable family of
open sets On in Rd such that every open set can be written as union of some
On. This is doable for instance by considering open balls with center having
rational components and rational radius. Write ωi =

⋃
n∈Ai

On, which implies
ω =

⋃
n∈B On where B =

⋃
i∈I Ai. For all n ∈ B we have n ∈ Ai for some i ∈ I.

Since f is zero almost everywhere on ωi, we have f = 0 almost everywhere
on On. Then, f is zero almost everywhere on every On included in ω, which
implies that f = 0 almost everywhere on ω.
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We then set, by definition, supp( f ) as Rd \ ω. We immediately see that if
f1 = f2 almost everywhere then supp( f1) = supp( f2). This is due to the fact
that if f1 and f2 coincide almost everywhere they cannot differ on any open
set.

3.51 exercise. Check that the above definition coincides with the usual one in
case f is continuous.

3.52 proposition. Let f ∈ L1(Rd) and g ∈ Lp(Rd) with 1 ∈ [1,+∞]. Then,

supp( f ∗ g) ⊂ supp( f ) + supp(g).

Proof. Fix x ∈ Rd and consider

( f ∗ g)(x) =
∫

Rd

f (x− y)g(y)dy =
∫

(x−supp( f ))∩supp(g)

f (x− y)g(y)dy .

Now, assume x 6∈ supp( f ) + supp(g). Then x − supp( f ) and supp(g) have
empty intersection, and therefore ( f ∗ g)(x) = 0. Thus, f ∗ g = 0 on Rd \ (∈
supp( f ) + supp(g)), which implies in particular

(Rd \ (supp( f ) + supp(g)))◦ ⊂ (Rd \ supp( f ∗ g))

and the assertion by taking complements of the above inclusion.

We remark that if both f and g have compact support then so does f ∗ g
(Exercise!).

3.53 definition. Let Ω ⊂ Rd be open. Let p ∈ [1,+∞]. The vector space
Lp

loc(Ω) is the set of all measurable functions f : Ω → R such that, for every
compact subset K ⊂ Ω, one has f 1K ∈ Lp(Ω), or equivalently f ∈ Lp(K).

3.54 exercise. Let p ∈ [1,+∞]. Prove that if f ∈ Lp than f ∈ Lp
loc. Show that

the converse is not true in general. Prove that Lq
loc ⊂ Lp

loc if p ≤ q.

Note in particular that Lp
loc(Ω) ⊂ L1

loc(Ω) for all p ≥ 1.
We now start investigating on how convolutions inherit the regularity of

just one of the two factors.

3.55 proposition. Let f ∈ Cc(Rd) and g ∈ L1
loc(R

d). Then f ∗ g is continuous on
Rd.

Proof. Let xn → x. We first notice that

y 7→ f (x− y)g(y)

has a well defined Lebesgue integral, because y ranges in the compact set
x − supp( f ) and g is summable on that set. Now, by possibly fattening the
support of f , we can find a compact set K containing the set xn − supp( f ) for
large enough n. Therefore, if y 6∈ K, then xn− y does not belong to the support
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of f and therefore f (xn − y) = 0. Since f continuous, then f is uniformly con-
tinuous on its support. Hence, using that every uniformly continuous function
f has a modulus of continuity

ω( f )(δ) = sup{| f (x)− f (y)| : |x− y| ≤ δ}

tending to zero as δ↘ 0, we get

| f (xn − y)− f (x− y)| ≤ ω(δn)1K(y) ,

as |xn − x| < δn ↘ 0. By integrating with respect to y we get

|( f ∗ g)(xn)− ( f ∗ g)(x)| ≤
∫

Rd

|g(y)|| f (xn − y)− f (x− y)|dy

≤ ω(δn)
∫
K

|g(y)|dy

which proves the assertion since the last integral above is finite.

3.56 proposition. Let f ∈ Ck
c Rd) and g ∈ L1

loc(R
d). Then f ∗ g ∈ Ck(Rd) and

Dα( f ∗ g) = (Dα f ) ∗ g

for any multi-index α with length less than k.

Proof. By induction we only need to prove the case k = 1. Let x ∈ Rd. We
claim that f ∗ g is differentiable at x and that ∇( f ∗ g)(x) = ((∇ f ) ∗ g)(x). Let
us fix h ∈ Rd with |h| < 1. For all y ∈ Rd we have

| f (x + h− y)− f (x− y)− h · ∇ f (x− y)|

=

∣∣∣∣∣∣
1∫

0

(h · ∇ f (x− y + sh)− h · ∇ f (x− y))ds

∣∣∣∣∣∣ .

Now, due to the uniform continuity of f and its first derivative on supp( f ), the
aboev integral can be controlled by |h|ω(h) for some modulus of continuity
ω(h)↘ 0 as |h| ↘ 0. Let K be a compact set such that x + B1(0)− supp( f ) ⊂
K. If y 6∈ K then x − y + h 6∈ supp( f ) for all h with |h| < 1. Therefore, for
y 6∈ K and |h| < 1,

f (x + h− y)− f (x− y)− h · ∇ f (x− y) = 0 .

Therefore, similarly to the previous proposition

| f (x + h− y)− f (x− y)− h · ∇ f (x− y)| ≤ |h|ω(|h|)1K(y) .
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Hence,

|( f ∗ g)(x + h)− ( f ∗ g)(x)− h · ((∇ f ) ∗ g)(x)|

≤
∫

Rd

|g(y)|| f (x + h− y)− f (x− y)− h · ∇ f (x− y)|dy

≤ |h|ω(|h|)
∫
K

|g(y)|dy ,

which implies the assertion by letting |h| ↘ 0.

3.57 definition (Mollifiers). A sequence of mollifiers ρn is a sequence of func-
tions on Rd such that

ρn ∈ C∞
c (Rd) , supp(ρn) ⊂ B1/n(0) ,

∫
Rd

ρn(x)dx = 1 , ρn ≥ 0 .

It is very easy to generate a family of mollifiers as follows. Take

ρ(x) =

{
e1/(|x|2−1) if |x| < 0
0 if |x| ≥ 1 .

Then set ρn(x) = Cndρ(nx) with

C =

∫
Rd

ρ(x)dx

−1

.

3.58 proposition. Assume f ∈ C(Rd). Then ρn ∗ f → f uniformly on compact
sets.

Proof. Fix a compact set K in Rd. Given ε > 0 there exists a δ > 0 such that

| f (x− y)− f (x)| < ε

provided |y| < δ and for all x ∈ K. Clearly, the δ depends on ε and on K. Now,

(ρn ∗ f )(x)− f (x) =
∫

ρn(y)( f (x− y)− f (x))dy

=
∫

B1/n(0)

ρn(y)( f (x− y)− f (x))dy .

For n > 1/δ and x ∈ K we get

|(ρn ∗ f )(x)− f (x)| ≤ ε
∫

ρn(y)dy = ε .
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3.59 theorem. Assume f ∈ Lp(Rd) with p ∈ [1,+∞). Then (ρn ∗ f )→ f in Lp.

Proof. Given ε > 0, we know there is a function f1 ∈ Cc(Rd) with ‖ f − f1‖Lp <
ε. We know that ρn ∗ f1 converges to f1 uniformly on compact sets. On the
other hand

supp(ρn ∗ f1) ⊂ B1/n(0) + supp( f1) ⊂ B1(0) + supp( f1) ,

which is a fixed compact set. Hence, it easily follows that

‖ρn ∗ f1 − f1‖Lp → 0 .

Now,

ρn ∗ f − f = ρn ∗ ( f − f1) + (ρn ∗ f1 − f1) + ( f1 − f ) ,

which gives

‖ρn ∗ f − f ‖Lp ≤ 2‖ f − f1‖Lp + ‖ρn ∗ f1 − f1‖Lp ,

as a consequence of Young’s inequality for convolutions. Therefore,

lim sup
n→+∞

‖ρn ∗ f − f ‖Lp ≤ 2ε

and the assertion follows from the arbitrariness of ε > 0.

3.60 corollary. Let Ω ⊂ Rd be open. Then C∞
c (Ω) is dense in Lp(Ω).

Proof. Postponed.

3.61 proposition. Let u ∈ L1
loc(Ω), Ω ⊂ Rd open. If

∫
Ω uφdx = 0 for all φ ∈

C∞
c (Ω), then u = 0 almost everywhere on Ω.

Proof. Let g ∈ L∞(Rd) be a function with compact support contained in Ω. Set
gn = ρn ∗ g. Hence, for large enough n, gn ∈ C∞

c (Ω). Hence, by assumption
we have for all n large enough∫

ugndx = 0 .

Since gn → g in L1(Rd), there exists a subsequence of gn (still denoted by gn
for simplicity) converging to g almost everywhere on Rd. Moreover, Young’s
inequality for convolutions implies ‖gn‖L∞ ≤ ‖g‖L∞ . Hence, by dominated
convergence we get∫

ugdx = 0 .

87



3. Measure and integration. Lp
spaces

Let K be a compact subset of Ω and set

g(x) =

{
sign(u(x)) if x ∈ K
0 otherwise .

We deduce

0 =
∫

Rd

ugdx =
∫
K

usign(u)dx =
∫
K

|u|dx .

Hence, |u| = 0 on K. Since K is arbitrary, |u| = 0 on Ω.

3.6 A criterion for strong compactness in Lp

In this subsection we shall use the shift function

(τh f )(x) = f (x + h) .

3.62 theorem (Kolmogorov-Riesz-Frechet). Let F be a bounded set in Lp(Rd)
with 1 ≤ p < +∞. Assume further that

lim
|h|↘0

‖(τh f )− f ‖Lp(Rd) = 0 uniformly on f ∈ F , (38)

that is, for ε > 0 there exists δ > 0 such that ‖(τh f )− f ‖Lp(Rd) < ε for all |h| < δ

and for all f ∈ F . Then, F|Ω is relatively compact in Lp(Ω) for any measurable
Ω ⊂ Rd having finite measure.

Proof. The proof is performed in four steps.
Step 1. Under the assumptions above, we claim that

‖ρn ∗ f − f ‖Lp(Rd) ≤ ε

for all f ∈ F and for all n > 1/δ. Indeed, Hoelder’s inequality implies

|(ρn ∗ f )(x)− f (x)| ≤
∫

ρn(y)| f (x− y)− f (x)|dy

=
∫

ρn(y)1/pρn(y)1/p′ | f (x− y)− f (x)|dy

≤
(∫

ρn(y)| f (x− y)− f (x)|pdy
)1/p (∫

ρn(y)dy
)1/p′

=

(∫
ρn(y)| f (x− y)− f (x)|pdy

)1/p
.

Hence,∫
|(ρn ∗ f )(x)− f (x)|pdx ≤

∫∫
ρn(y)| f (x− y)− f (x)|pdydx ,

and by assumption the above is controlled, for n > 1/δ, by εp.
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Step 2. We claim that there exists a constant Cn depending only on n such
that

‖ρn ∗ f ‖L∞ ≤ Cn‖ f ‖Lp for all f ∈ F

and

|(ρn ∗ f )(x1)− (ρn ∗ f )(x2)| ≤ Cn‖ f ‖Lp |x1− x2| for all f ∈ F and for all x1, x2 ∈ Rd .

Indeed, we have

|(ρn ∗ f )(x)| ≤
∫

ρn(y)| f (x− y)|dy ≤
(∫

ρn(y)p′dy
)1/p′

‖ f ‖Lp

and, since ∇(ρn ∗ f ) = (∇ρn) ∗ f , similarly we get

‖∇(ρn ∗ f )‖L∞ ≤ ‖∇ρn‖Lp′ ‖ f ‖Lp ,

which implies the assertion since the L∞ norm of ∇(ρn ∗ f ) controls the dif-
ference quotients of ρn ∗ f .

Step 3. Given ε > 0 and Ω with finite measure, we can find ω ⊂ Ω
bounded and measurable such that

‖ f ‖Lp(Ω\ω) < ε for all f ∈ F .

Indeed, we write

‖ f ‖Lp(Ω\ω) ≤ ‖ f − (ρn ∗ f )‖Lp(Rd) + ‖ρn ∗ f ‖Lp(Ω\ω) ,

and the last term above is controlled by

m(Ω \ω)1/pCn‖ f ‖Lp(Rd)

which can be made small by choosing m(Ω \ω) small, which is always possi-
ble since the measure of Ω is finite.

Step 4. Since Lp(Ω) is complete, to conclude we need to show that F|Ω
is totally bounded. Let ε > 0. Let us fix ω ⊂ Ω as above, and let us fix
n > 1/δ. The family H := (ρn ∗ F )|ω satisfies all assumptions of Arzelà-
Ascoli Theorem. Therefore, H is relatively compact in C(ω). Since ω has finite
measure, it is easily checked that H has in fact compact closure in Lp(ω).
Hence, by total boundedness we can cover H by a finite number of balls in
Lp(ω) with radius ε. Therefore, there exists finitely many gi ∈ Lp(ω), i =
1, . . . , k, such that

H ⊂
k⋃

i=1

Bε(gi) .

Now, for all i ∈ 1, . . . , k we set g̃i : Ω → R to be equal to g on ω and zero
elsewhere. We claim that F|Ω can be covered by the balls of centers g̃i and
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radius 3ε. Let f ∈ F . There is some i such that

‖ρn ∗ f − gi‖Lp(ω) < ε .

Since

‖ f − g̃i‖
p
Lp(Ω)

=
∫

Ω\ω

| f |pdx +
∫
ω

| f − gi|pdx ,

we have

‖ f − g̃i‖Lp(Ω) ≤ ε + ‖ f − gi‖Lp(ω)

≤ ε + ‖ f − ρn ∗ f ‖Lp(Rd) + ‖ρn ∗ f − gi‖Lp(ω) ≤ 3ε .

Hence, we conclude that F|Ω can be covered by finitely many balls with
radius 3ε, which implies total boundedness and the thesis.

3.63 remark. As a consequence of the previous theorem, let F be a bounded
subset of Lp(Rd) with p ∈ [1,+∞) such that (38) holds and such that for every
ε > 0 there exists a bounded set Ω ⊂ Rd such that∫

Rd\Ω

| f |pdx < ε for all f ∈ F .

Then, F has compact closure in Lp(Rd).

In general, if we want to achieve strong compactness in Lp on the whole space
Rd, we need an additional assumption as in the previous remark, otherwise
there may be situations in which just (38) alone (and the boundedness) is not
sufficient for compactness, see the Exercises.

3.7 Finite-dimensional Banach spaces

In this subsection, we prove that every finite-dimensional (real or complex)
normed linear space is continuous, and that all norms on a finite-dimensional
space are equivalent. None of these statements is true for infinite-dimensional
linear spaces. As a result, topological considerations can often be neglected
when dealing with finite-dimensional spaces but are of crucial importance on
infinite-dimensional psaces. we begin by proving that the components of a
vector with respect to any basis of a finite-dimensional space can be bounded
by the norm of the vector.

3.64 definition. Let X be a linear space. Two norms ‖ · ‖1 and ‖ · ‖2 on X are
equivalent if there are constants c > 0 and C > 0 such that

c‖x‖1 ≤ ‖x‖2 ≤ C‖x‖1 for all x ∈ X.

It is clear that if two norms are equivalent, then the two normed spaces
(X, ‖ · ‖1) and (X, ‖ · ‖2) have the same topology, i. e. they have the same
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convergent sequences (exercise).
Geometrically, two norms are equivalent if the unit ball of either one of the

norms is contained in a ball of finite radius of the other norm.

3.65 lemma. Let X be a finite-dimensional normed linear space with norm ‖ · ‖, and
{e1, . . . , en} any basis of X. There are constants m > 0 and M > 0 such that if
x = x1e1 + x2e2 + . . . xnen, then

m
n

∑
i=1
|xi| ≤ ‖x‖ ≤ M

n

∑
i=1
|xi|. (39)

Proof. It suffices to prove the assertion for x ∈ X such that ‖x‖1
.
= ∑n

i=1 |xi| =
1. Indeed, for a general x ∈ X, let x̃ = x

‖x‖1
, we would have then m ≤ ‖x̃‖ ≤ M,

i.e. m‖x‖1 ≤ ‖x‖ ≤ M‖x‖1. Now, the cube

C = {(x1, . . . , xn) ∈ Rn : ‖x‖1 = 1}

is a closed, bounded subset of Rn, and is therefore compact by the Heine-Borel
theorem. We define a function f : C → X by

f ((x1, . . . , xn)) =
n

∑
i=1

xiei.

For (x1, . . . , xn), (y1, . . . , yn) ∈ Rn, we have

‖ f ((x1, . . . , xn))− f ((y1, . . . , yn))‖ ≤
n

∑
i=1
|xi − yi|‖ei‖ ≤ B

n

∑
i=1
|xi − yi|,

where B = maxi ‖ei‖, therefore f is continuous. Since ‖ · ‖ : X → R is contin-
uous, the map

Rn 3 (x1, . . . , xn) 7→ ‖ f ((x1, . . . , xn))‖ ∈ R

is continuous. Theorem 1.74 implies that ‖ f ‖ is bounded on C and attains its
infimum and supremum. Denoting the minimum by m ≥ 0 and the maximum
by M ≥ m, we obtain the assertion except that we still have to prove that
m > 0. Assume by contradiction that m = 0. This means that there exists
xmin ∈ C such that f (xmin) = 0. By definition of f this implies xmin = 0, a
contradiction because xmin ∈ C.

3.66 theorem. Every finite-dimensional normed linear space is a Banach space.

Proof. Suppose (xk) is a Cauchy sequence in a finite-dimensional normed lin-
ear space X. Let {e1, . . . , en} be a basis of X. We expand xk as

xk =
n

∑
i=1

xk,iei,

where xi,k ∈ R. For 1 ≤ i ≤ n, we consider the real sequence of i-th compo-
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nents, (xk,i)
+∞
k=1. Equation (39) implies that

|xk,i − xh,i| ≤
1
m
‖xk − xh‖,

so (xk,i)
+∞
k=1 is a Cauchy sequence in R. Since R is complete, there is a yi ∈ R

such that

lim
k→+∞

xk,i = yi.

We define y ∈ X by

y =
n

∑
i=1

yiei.

Then, from (39),

‖xk − y‖ ≤ M
n

∑
i=1
|xk,i − yi|‖ei‖,

and hence xk → y as k → +∞. Thus, every Cauchy sequence in X converges,
and X is complete.

As a consequence, we have the following corollary.

3.67 corollary. Every finite-dimensional linear subspace of a normed linear space
is closed.

Finally, we show that although there are many different norms on a finite-
dimensional linear space, they all lead to the same topology and the same
notion of convergence.

3.68 theorem. Any two norms on a finite-dimensional space are equivalent.

Proof. Let ‖ · ‖1 and ‖ · ‖2 be two norms on a finite-dimensional space X. We
choose a basis {e1, . . . , en} of X. then Lemma 3.65 implies that there are strictly
positive constants m1, m2, M1, M2 such that if x = ∑n

i=1 xiei then

m1

n

∑
i=1
|xi| ≤ ‖x‖1 ≤ M1

n

∑
i=1
|xi|,

m2

n

∑
i=1
|xi| ≤ ‖x‖2 ≤ M2

n

∑
i=1
|xi|.

Hence, we have

‖x‖1 ≤
M1

m1
‖x‖2 ≤

M2

m1
‖x‖1.
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3.8 `p spaces

3.69 definition (`p spaces). Let p ∈ [1,+∞) be a real number. We say that a
sequence x = {xk}k∈N of real numbers is in `p if

+∞

∑
k=1
|xk|p < +∞.

The space of real sequences with the above property is called `p. For all x ∈ `p,
the quantity

‖x‖`p :=

[
+∞

∑
k=1
|xk|p

]1/p

is called the `p-norm of x. The space `∞ is the space of bounded sequences, i.
e.

sup
k∈N

|xk| < +∞.

For all x ∈ `∞, the quantity

‖x‖`∞ := sup
k∈N

|xk|

is called the `∞-norm of x.

The space `p can be seen as a subset of the vector space of all sequences of
real numbers, with the obvious operations

• x = {xk}k ∈ `p, y = {yk}k ∈ `p, x + y = {xk + yk}k

• x = {xk}k ∈ `p, λ ∈ R, λx = {λxk}k.

Proving that the sum between two vectors in well defined, as well as prov-
ing that ‖x‖`p is an actual norm, is not immediate. The first two properties of
a norm (i. e. ‖x‖`p = 0 implies x = 0, and ‖λx‖`p = |λ|‖x‖`p ) are trivial. For
the third one, i. e. the triangular inequality, we have to struggle a bit more.
Once we have that, the sum between vectors will also be well defined, and we
shall have a nice family of normed spaces to work with.

3.70 exercise (Young’s inequality). Let p ∈ [1,+∞) and let p′ be its conjugate.
Let a, b ≥ 0 be two positive numbers. Then,

ab ≤ ap

p
+

bp′

p′
.

Solution. If ab = 0 there is nothing to prove. Assume a > b > 0. Set A = ap

and B = bp′ . We need to prove that

A1/pB1/p′ ≤ A
p
+

B
p′

.
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Multiplication by 1/B makes the above inequality equivalent to

1
p

(
A
B

)
+

1
p′
≥
(

A
B

)1/p

where we have used 1
p′ − 1 = − 1

p . Now, set t = A
B ≥ 1. The above becomes

equivalent to proving that

1
p

t +
1
p′
≥ t1/p for all t ≥ 1.

But the function φ(t) = 1
p t + 1

p′ − t1/p satisfies φ(1) = 0, φ′(t) = 1
p −

1
p t

1
p−1,

which is ≥ 0 for t ≥ 1. Therefore, φ(t) ≥ 0 for all t ≥ 1, which proves the
assertion.

3.71 exercise (Discrete Hölder’s inequality). Let x = {xk}k ∈ `p and y =
{yk}k ∈ `p′ with p, p′ ∈ [1,+∞) conjugate numbers. Prove that

+∞

∑
k=1
|xk||yk| ≤ ‖x‖`p‖y‖`p′

.

Solution. Set

Xk =
xk
‖x‖`p

, Yk =
yk
‖y‖`p′

, for all k ≥ 1.

We need to prove that ∑+∞
k=1 |Xk||Yk| ≤ 1. From Young’s inequality, |Xk||Yk| ≤

|Xk |p
p + |Yk |p

′

p′ for all k ≥ 1, and taking the sum over k we get

+∞

∑
k=1
|Xk||Yk| ≤

1
p

+∞

∑
k=1
|Xk|p +

1
p′

+∞

∑
k=1
|Yk|p

′
=

1
p
+

1
p′

= 1.

We are now ready to prove the triangular inequality on `p.

3.72 exercise (Discrete Minkowski’s inequality). Let x, y ∈ `p ∈ [1,+∞].
Prove that x + y ∈ `p and ‖x + y‖`p ≤ ‖x‖`p + ‖y‖`p .

Solution. For p < +∞, compute

∑
k≥1
|xk + yk|p = ∑

k≥1
|xk + yk||xk + yk|p−1

≤ ∑
k≥1
|xk||xk + yk|p−1 + ∑

k≥1
|yk||xk + yk|p−1,

where we have used the obvious inequality |xk + yk| ≤ |xk|+ |yk|. Now, since
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p′ = p
p−1 is conjugate of p, the above discrete Hölder’s inequality implies

∑
k≥1
|xk + yk|p ≤

(
∑
k≥1
|xk|p

)1/p (
∑
k≥1
|xk + yk|p

) p−1
p

+

(
∑
k≥1
|yk|p

)1/p (
∑
k≥1
|xk + yk|p

) p−1
p

,

which yields

(
∑
k≥1
|xk + yk|p

)1− p−1
p

≤
(

∑
k≥1
|xk|p

)1/p

+

(
∑
k≥1
|yk|p

)1/p

,

which proves the assertion. The case p = +∞ is a trivial exercise.

3.73 exercise (Completeness of the `p spaces). Let p ∈ [1,+∞]. Let xn =
{xn,k}k be a Cauchy sequence in `p. Then, xn → x as n → +∞ in ‖ · ‖`p for
some x ∈ `p.

Solution.
Let us first consider the case p = 1. Since

∑
k≥1
|xn,k − xm,k| → 0 as n, m→ +∞,

for all k ≥ 1 we have that {xn,k}n is a Cauchy sequence in R, and hence there
exists some xk ∈ R such that xn,k → xk as n → +∞. We need to prove that
x = {xk} ∈ `1 and that ‖xn − x‖`1 → 0 as n → +∞. Let ε > 0. The Cauchy
condition on the sequence xn reads

+∞

∑
k=1
|xn,k − xm,k| < ε for m ≥ n ≥ Nε,

for some Nε ∈N. Now let K ∈N, from above we have

K

∑
k=1
|xn,k − xm,k| < ε for m ≥ n ≥ Nε,

and since xn,k → xk as n → +∞ (and the above sum has finitely many terms),
we have

K

∑
k=1
|xn,k − xk| < ε for n ≥ Nε.

Since Nε does not depend on K, we can take the supremum with respect to K
above and get

∑
k≥1
|xn,k − xk| = sup

K∈N

K

∑
k=1
|xn,k − xk| < ε for n ≥ Nε,

which shows that ‖xn − x‖`1 → 0 as n → +∞. By triangular inequality, we
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then get

‖x‖`1 ≤ ‖x− xNε‖`1 + ‖xNε‖`1 ≤ ε + ‖xNε‖`1 ,

and the last term above is finite.
Now, let p ∈ (1,+∞). Assume {xn}n ∈ `p is a Cauchy sequence. Hence, as

above we can easily show that there exists a sequence {xk}k of real numbers
such that xn,k → xk as n→ +∞ for all k ≥ 1. To prove that x = {xk}k ∈ `p, for
a given ε let Nε, kε ∈N such that, for all n, m ≥ Nε,

∑
k≥1
|xn,k − xm,k|p < ε, for m ≥ n ≥ Nε. (40)

As before, for all K ∈N we have

K

∑
k=1
|xn,k − xm,k|p < ε for m ≥ n ≥ Nε,

and the assertion ‖xn − x‖`p → 0 follows similarly as in the case p = 1. The
triangular inequality then proves once again that x ∈ `p.

Finally, let us consider the case p = +∞. Assume {xn}n ∈ `∞ is a Cauchy
sequence. For a given ε > 0, there exists Nε ∈ N such that, for all n, m ≥ Nε

one has

sup
k∈N

|xn,k − xm,k| < ε.

This implies that each sequence {xn,k}n (for all k ≥ 1) converges in n to some
xk ∈ R. Let x = {xk}k. We can set m > n and send m → +∞ above and get
|xn,k − xk| ≤ ε for all n ≥ Nε. This holds for all k ≥ 1, hence ‖xn − x‖`∞ ≤ ε
for all n ≥ Nε. Moreover, ‖x‖`∞ ≤ ‖xNε − x‖`∞ + ‖xNε‖`∞ , which proves that
x ∈ `∞

3.9 Exercises

1. Let A, B ⊂ Rd be two Lebesgue measurable sets. Assume that A = B \C
with C a measurable set with m(C) = 0. Then prove that m(A) = m(B).

2. Find an example of a sequence of measurable functions fn on R which
do not satisfy the assumptions of Fatou’s lemma and for which∫ (

lim inf
n→+∞

fn(x)
)

dx > lim inf
n→+∞

∫
fn(x)dx.

3. Show that the indicator function 1A of a set A ⊂ Rd is measurable if and
only if the set A is Lebesgue measurable.

4. Suppose { fn}n is a sequence of measurable, nonnegative functions. As-
sume fn → f almost everywhere on Rd. Prove that f is almost every-
where nonnegative.
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5. Let f : Rd → [0,+∞] be a summable function. Show that for every ε > 0
there exists a measurable set E ⊂ Rd such that∫

Rd\E

| f (x)|dx < ε

(Hint: use the dominated convergence theorem).

6. For each of the following sequences of functions (restricted to the do-
main I),

• determine whether or not they converge almost everywhere on I,
and in the affirmative case find the almost everywhere limit f ,

• say whether or not
∫

I fndx →
∫

I f dx as n→ +∞,

• say whether or not the sequence converges uniformly to f on I:

(a) fn(x) = nx
1+n2x2 , I = [0, 1].

(b) fn(x) = nxe−nx2
, I = (0, 1).

(c) fn(x) = n2x2

n4+x2 , I = (1,+∞).

(d) fn(x) = nx
1+n2x2 , I = (0,+∞).

(e) fn(x) = nxe−n2x2
, I = [0, 1].

(f) fn(x) = nxe−n2x2
, I = [1,+∞).

(g) fn(x) = nxe−n2x2
, I = [0,+∞).

(h) fn(x) = 1
1+xn , I = [0,+∞).

7. Let E ⊂ Rd be a measurable set. Let f ∈ Lp(E) and g ∈ Lq(E) for some
p, q ∈ [1,+∞]. Let r ∈ [1,+∞] be such that

1
r
=

1
p
+

1
q

.

Prove that f · g ∈ Lr(E), and

‖ f g‖Lr ≤ ‖ f ‖Lp‖g‖Lq .

8. On Rd, let

f0(x) =

{
|x|−α if |x| < 1
0 if |x| ≥ 1,

and

f∞(x) =

{
|x|−α if |x| ≥ 1
0 if |x| < 1.

Show that
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• f0 ∈ Lp if and only if pα < d.

• f∞ ∈ Lp if and only if pα > d.

9. For each of the following functions defined on the set I ⊂ R, say for
which p ∈ [1,+∞] the function f belongs to Lp(I):

(a) f (x) = sin |x|
|x|2 , I = [−1, 1].

(b) f (x) = x2/3 log x, I = (0, 1).

(c) f (x) =
√

x3

1+x2+x4 , I = [0,+∞).

(d) f (x) = arctan x
x , I = (0,+∞).

(e) f (x) = 1
x log x , I = (0, 1).

(f) f (x) = 1
x log x , I = (1,+∞).

10. For each of the following sequences of functions defined on the set I ⊂
R,

• determine whether or not they converge almost everywhere on I,
and in the affirmative case find the almost everywhere limit f ,

• say whether or not fn → f in Lp(I) for the index p indicated:

(a) fn(x) = n2x2

1+n3x3 , I = [0,+∞), p = 2,

(b) fn(x) = 1
1+nx1/3 , I = [0,+∞), p = 2,

(c) fn(x) = n sin(x/n)e−2x, I = [0,+∞), p = 1,

(d) fn(x) = 1
1+n
√

x , I = [0, 1], p = 1.

(e) fn(x) = ne−nx, I = (0, 1), p ∈ [1,+∞).

(f) fn(x) = n1/3e−nx, I = (0,+∞), p ∈ [1,+∞]

11. Let fn : R→ R be defined via

fn(x)


−1 if x < −1/n
n if −1/n ≤ x ≤ 1/n
1 if x > 1/n.

• Find the almost everywhere limit of fn as n→ +∞.

• Prove that fn does not converge uniformly to f .

• Prove that fn converges to f in Lp(R) if and only if p ∈ [1,+∞).

12. Let B be a bounded subset of Lp(Rd) with p finite and let G ∈ L1(Rd).
Consider the set

F = {G ∗ f : f ∈ B} .

Prove that F|Ω has compact closure in Lp(Ω) for any measurable set Ω
with finite measure.
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13. Let ϕ ∈ C∞
c (Rd) and let

F = {ψn(x) = ϕ(x + n) : n ∈N} .

Prove that F satisfies (38) but it doesn’t have compact closure in Lp(Rd)
for p finite.

3.10 Envisaged outcomes

At the end of this chapter, the student should be familiar with

• The main differences between Peano-Jordan integration theory and Lebesgue
integration theory.

• The definition and the main properties of Lebesgue measure and inte-
gration.

• The three main theorems regarding the limit interchange properties of
Lebesgue integration, the main examples in which that property fails.
The student should be able to determine whether or not such property
holds in the exercises.

• The definition and the main properties of Lp spaces, including the main
integral inequalities (Hölder’s and Minkowski’s), completeness, den-
sity properties, and separability. The student must be able to determine
whether or not a given function belongs to a given Lp space.

• The notion of convergence in Lp. The student should be able to establish
that a sequence converges (or does not converge) in Lp in the exercises.

• The concept of strong compactness in Lp, the use of Kolmogorov-Riesz-
Frechet theorem.
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4 Introduction to linear operators on Banach spaces

Many linear equations can be formulated in terms of a suitable linear operator
acting on a Banach space (see Problem 0.2). In this section we study linear
operators acting on Banach spaces in greater detail.

4.1 Bounded linear maps

We recall the concept of linear operator, which should be well known from
basic linear algebra. A linear map or linear operator T between real (or complex)
linear spaces X, Y is a function T : X → Y such that

T(λx + µy) = λTx + µTy, for all λ, µ ∈ R (or C) and x, y ∈ X.

A linear map T : X → X is called a linear transformation of X, or a linear
operator on X. If a linear map T : X → Y is one-to-one and onto, then we say
that T is invertible, and define the inverse map T−1 : Y → X by T−1y = x if
and only if Tx = y, so that TT−1 = IY, T−1T = IX . The linearity of T implies
the linearity of T−1 (exercise!). An useful exercise in this contexts is to prove
that for a linear operator T, the image of the zero vector in X, T(0), is always
equal to the zero vector in Y.

A natural question arises: are linear operators continuous? In the finite di-
mensional case we expect this is the case. Sadly, in infinite dimension this is
not always the case.

4.1 proposition. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y) be two normed spaces. Let T : X →
Y be a linear map. Then, the following are equivalent:

(i) T is continuous at x = 0 ∈ X.

(ii) T is continuous on all points x ∈ X.

(iii) T maps bounded sets of X into bounded sets of Y.

(iv) There exists M > 0 such that

‖T(x)‖Y ≤ M‖x‖X . (41)

Proof. (i) implies (ii): Assume T is continuous at 0 ∈ X. Let x ∈ X. Let {xn}n
be a sequence in X which converges to x as n→ +∞. Consider

‖T(xn)− T(x)‖Y = ‖T(xn − x)‖Y → 0,

because xn − x converges to zero and T is continuous at zero.
(ii) implies (iii): Let A ⊂ X be a bounded set. This means A ⊆ BR(0)

for some R ≥ 0. We claim there exists S ≥ 0 such that T(A) ⊆ BS(0) ⊂ Y.
Assume by contradiction that for every n ∈ N there exists xn ∈ A such that
‖T(xn)‖Y ≥ n. Set vn := xn

n . Since ‖xn‖X ≤ R, then vn → 0 as n → +∞. On
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the other hand,

‖T(vn)‖Y =

∥∥∥∥T(xn)

n

∥∥∥∥
Y
=

1
n
‖T(xn)‖Y ≥ 1.

This is a contradiction with the fact that T is continuous at zero.
(iii) implies (iv): By contradiction, assume that for all n ∈ N there exists

xn ∈ X with ‖T(xn)‖Y ≥ n‖xn‖X . Set yn = xn
‖xn‖X

. Clearly ‖yn‖X = 1. More-
over,

‖T(yn)‖Y =
1

‖xn‖X
‖T(xn)‖Y ≥ n,

which implies the set T({yn}n) is unbounded, whereas {yn}n is bounded, a
contradiction.

(iv) implies (i): Let {xn}n converge to zero as n→ +∞. Then, the condition
‖T(x)‖Y ≤ M‖x‖X easily implies ‖T(xn)‖Y → 0, which gives the continuity
of T at zero.

4.2 definition. Let X and Y be normed spaces. A linear operator T : X → Y
is called a bounded operator if it is continuous. The (operator) norm of T is the
number

‖T‖ = sup
x 6=0

‖T(x)‖Y
‖x‖X

,

i. e. ‖T‖ is the infimum of all M such that condition (41) is satisfied. The space
of all bounded linear operators from X to Y is denoted by L(X, Y).

4.3 exercise. Let T : X → Y be linear and bounded and let ‖T‖ be its norm.
Then,

‖T‖ = inf{M ≥ 0 : ‖Tx‖ ≤ M‖x‖ , for all x ∈ X} .

Moreover,

‖T‖ = sup
x 6=0 ‖x‖≤1

‖Tx‖ = sup
‖x‖=1

‖Tx‖ .

To prove the latter, we observe first of all that

‖Tx‖
‖x‖ =

∥∥∥∥T
x
‖x‖

∥∥∥∥ ,

which shows that ‖T‖ is the supremum of ‖Tz‖ on the set ‖z‖ = 1. Then, for
all x ∈ X with ‖x‖ ≤ 1 we set x̃ = x

‖x‖ and observe

‖Tx̃‖ = ‖Tx‖
‖x‖ ≥ ‖Tx‖

which implies the supremum of ‖Tx‖ on ‖x‖ ≤ 1 is bounded from above by
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the supremum of ‖Tx‖ on ‖x‖ = 1. The opposite inequality is trivial.

4.4 exercise. With the notation in the previous definition, prove that ‖T(x)‖Y ≤
‖T‖‖x‖X .

4.5 exercise. Prove that the operator norm ‖ · ‖ is a norm on the linear space
L(X, Y).

4.6 proposition. Let X be a normed space and Y be a Banach space. Then the space
L(X, Y) is a Banach space

Proof. We only need to prove that L(X, Y) is complete. Let Tn be a Cauchy
sequence on L(X, Y) with respect to the operator norm ‖ · ‖. This means that,
for all ε > 0, there exists an N(ε) such that ‖Tn − Tm‖ ≤ ε for all n, m ≥ N(ε).
Hence, for all x ∈ X,

‖Tn(x)− Tm(x)‖Y = ‖(Tn − Tm)(x)‖Y ≤ ‖Tn − Tm‖‖x‖X ≤ ε‖x‖X .

The above shows that the sequence Tn(x) is a Cauchy sequence in Y, which
is complete, i. e. there exists an element y ∈ Y such that Tn(x) → y. Since y
depends on x via T, we name y = T(x). It is easily shown that T is a linear
operator. Indeed, for x1, x2 ∈ X, we have

T(x1 + x2) = lim
n→+∞

Tn(x1 + x2) = lim
n→+∞

(Tn(x1) + Tn(x2)) = T(x1) + T(x2).

Moreover, T is a bounded operator. To see this, let ε > 0. Then, one easily
sees that there exists N ∈ N such that ‖T − TN‖ ≤ ε (as a consequence of the
Cauchy condition on Tn). Therefore,

‖T(x)‖Y = ‖(T−TN)(x)‖Y + ‖TN(x)‖Y ≤ ‖T−TN‖‖x‖X + ‖TN‖‖x‖X ≤ ε‖x‖X + MN‖x‖X ,

where MN = ‖TN‖. This implies ‖T(x)‖Y ≤ (ε + MN)‖x‖X , i. e. T is a
bounded operator.

4.7 definition. We say that a sequence Tn ∈ L(X, Y) is norm-convergent to
T ∈ L(X, Y) if ‖Tn − T‖ → 0 as n → +∞. We say that Tn converges to T
pointwise if ‖Tn(x)− T(x)‖Y → 0 as n→ +∞ for all x ∈ X.

4.8 exercise. Prove that T : X → Y is bounded if and only if T maps the unit
ball {‖x‖ ≤ 1} into a bounded set.

4.9 example. The linear map A : R→ R defined by Ax = ax, where a ∈ R, is
bounded, and has norm ‖A‖ = |a|.

4.10 example. The identity map I : X → X is bounded on any normed space
X, and has norm one. If a map has norm zero, then it is the zero map 0x = 0.

4.11 theorem. Every linear operator on a finite-dimensional linear space is bounded.

Proof. Suppose that A : X → X is a linear map and X is finite dimensional.
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4.1. Bounded linear maps

Let {e1, . . . , en} be a basis of X. If x = ∑n
i=1 xiei ∈ X, then (39) implies that

‖Ax‖ ≤
n

∑
i=1
|xi|‖Aei‖ ≤ max

1≤i≤n
{‖Aei‖}

n

∑
i=1
|xi| ≤

1
m

max
1≤i≤n

{‖Aei‖} ‖x‖,

so A is bounded.

Linear maps on infinite-dimensional normed spaces need not be bounded.

4.12 example. Let X = C∞([0, 1]) consist of the smooth functions on [0, 1] that
have continuous derivatives of all orders. equipped with the maximum norm
‖ · ‖∞. The space X is a normed space, but is not a Banach space, since it is
incomplete. The differentiation operator Du = u′ is an unbounded linear map
D : X → X. For example, the function u(x) = eλx satisfies Du = λu. Thus,
‖Du‖/‖u‖ = |λ| may be arbitrarily large. The unboundedness of differential
operators is a fundamental difficulty in their study.

4.13 exercise (Operator norms of finite dimensional matrices). We now show
how, in the finite dimensional case, the norm of an operator cam be computed
depending on norm on the space, in terms of the associated matrix. Suppose
that A : X → Y is a linear map between finite-dimensional real linear spaces
X, Y with dimX = n, dimY = m. We choose bases {e1, e2, . . . , en} of X and
{ f1, f2, . . . , fm} of Y. Then

A(ej) =
m

∑
i=1

aij fi,

for a suitable m× n matric (aij) with real entries. We expand x ∈ X as

x =
n

∑
i=1

xiei,

where xi ∈ R is the i-th component of x. It follows from the linearity of A that

A(x) = A

(
n

∑
j=1

xjej

)
=

n

∑
j=1

xj A(ej) =
m

∑
i=1

yi fi, yi =
n

∑
j=1

xjaij.

Thus, given a choice of bases for X, Y, we may represent A as a linear map
A : Rn → Rm, where

y1
y2
...

ym

 =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn




x1
x2
...

xn

 . (42)

We will often use the same notation A to denote a linear map on a finite-
dimensional space and its associated matrix, but is important not to confuse
the geometrical notion of a linear map with the matrix of numbers that repre-
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sents it.

Each pair of norms on Rn and Rm induces a corresponding operator norm
(or matrix norm) on A. We first consider the Euclidean norm, or 2-norm, ‖A‖2
of A. The Euclidean norm of a vector x is given by ‖x‖2 = (x, x), where
(x, y) = xTy. We may compute the Euclidean norm of A by maximizing ‖Ax‖2
on the unit sphere ‖x‖2 = 1. The maximizer x is a critical point of the function

f (x, λ) = (Ax, Ax)− λ{(x, x)− 1},

where λ ∈ R is a Lagrange multiplier. Computing ∇ f and setting it equal to
zero, we find that x satisfies

AT Ax = λx. (43)

Hence, x is an eigenvector of the matrix AT A and λ is an eigenvalue. The
matrix AT A is an n × n symmetric matrix, with real, nonnegative eigenval-
ues (this easily follows after multiplying (43) by x via scalar product). At an
eigenvector x of AT A that satisfies (43), normalized so that ‖x‖2 = 1, we have
(Ax, Ax) = λ. Thus, the maximum value of ‖Ax‖2 on the unit sphere is the
maximum eigenvalue of AT A.

We define the spectral radius r(B) of a squared matrix B to be the maximum
absolute value of its eigenvalues. It follows that the Euclidean norm of A is
given by

‖A‖2 =
√

r(AT A). (44)

In the case of linear maps A : Cn → Cm on finite dimensional complex linear
spaces, equation (44) holds with AT replaced by A∗, where A∗ is the Hermi-
tian conjugate of A.

To compute the maximum norm of A, we observe from (42) that

|yi| ≤ |ai1||x1|+ |ai2||x2|+ . . . + |ain||xn| ≤ (|ai1|+ . . . + |ain|)‖x‖∞.

Taking the maximum of this equation with respect to i and comparing the
result with the definition of operator norm, we conclude that

‖A‖∞ ≤ max
1≤i≤m

(|ai1|+ . . . + |ain|).

Conversely, suppose that the maximum on the right-hand side of this equation
is attained at i = i0. Let x be the vector with components xj = sign ai0 j, where
sign is the sign function

sign x =


1 if x > 0
0 if x = 0
−1 if x < 0.
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4.1. Bounded linear maps

Then, if A is nonzero, we have ‖x‖∞ = 1, and

‖Ax‖∞ = |ai01|+ . . . + |ai0n|,

which shows that

‖A‖∞ = max
1≤i≤m

(
n

∑
j=1
|aij|

)
.

A similar argument (exercise) shows that the sum norm of A is given by the
maximum column sum

‖A‖1 = max
1≤j≤n

m

∑
i=1
|aij|.

For 1 < p < +∞, one can show (we omit the proof) that

‖A‖p ≤ ‖A‖1/p
1 ‖A‖1−1/p

∞ .

There are norms on the space L(Rn, Rm) = Rn×n of m × n matrices that
are not associated with any vector norms on Rn and Rm. An example is the
Hilbert-Schmidt norm

‖A‖ =
(

m

∑
i=1

n

∑
j=1
|aij|2

)1/2

.

Next, we give some examples of linear operators on infinite-dimensional
spaces.

4.14 example. Let X = `∞(N) be the space of bounded sequences x =
{(x1, x2, . . .)} with the norm

‖x‖∞ = sup
i∈N

|xi|.

A linear map A : X → X is represented by an infinite matrix (aij)
+∞
i,j=1, where

(Ax)i =
+∞

∑
j=1

aijxj.

In order for this sum to converge for any x ∈ `∞(N), we require that

+∞

∑
j=1
|aij| ≤ +∞
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for each i ∈N, and in order for Ax to belong to `∞(N), we require that

sup
i∈N

(
+∞

∑
j=1
|aij|

)
< +∞.

Then A is a bounded linear operator on `∞(N), and its norm is the maximum
row sum

‖A‖∞ = sup
i∈N

(
+∞

∑
j=1
|aij|

)
.

The details are omitted.

4.15 example. Let X = `p(N). Consider the operator T : X → X defined by

(Tx)n = αnxn,

for all x ∈ `p, with α = (αn)n a given sequence of real numbers. Let us figure
out what condition we should impose on αn in order to have T bounded from
X into itself, and let us compute the operator norm. A simple estimate gives

‖Tx‖p
`p ≤ sup

n
|αn|‖x‖p

`p .

The above estimate is sharp: let αnk be a subsequence converging to ‖α‖`∞ as
k→ +∞. Let xk be the sequence in `p defined by

(xk)i = δi,nk , i = 1, 2, 3, . . . .

We immediately see that ‖Txk‖p
`p tends to ‖α‖`∞ ¡as k → +∞ and ‖xk‖`p = 1.

Therefore,

‖T‖ = ‖α‖`∞ .

4.16 example. Let X = C([0, 1]) with the maximum norm, and

k : [0, 1]× [0, 1]→ R

be a continuous function. We define the linear Fredholm integral operator
K : X → X by

K f (x) =
1∫

0

k(x, y) f (y)dy.

Then K is bounded and

‖K‖ ≤ max
0≤x≤1

 1∫
0

|k(x, y)|dy

 .
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The details are left as an exercise.

4.2 The kernel and range of a linear map

The kernel and range are two important linear subspaces associated with a
linear map.

4.17 definition. Let T : X → Y be a linear map between linear spaces X, Y.
The null space or kernel of T, denoted by ker T, is the subset of X defined by

ker T = {x ∈ X : Tx = 0}.

The range of T, denoted by RanT, is the subset of Y defined by

RanT = {y ∈ Y : there exists x ∈ X such that Tx = y}.

The word ‘kernel’ is also used in a completely different sense to refer to
the kernel of an integral operator. A linear map T : X → Y is one-to-one if
and only if ker T = {0}, and is onto if and only if RanT = Y.

4.18 exercise. Let T : X → Y be a linear map between linear spaces X, Y.
Prove that ker T is a linear subspace of X and RanT is a linear subspace of Y.
If X and Y are normed linear spaces and T is bounded, prove that the kernel
of T is a closed linear subspace of X.

The nullity of T is the dimension of the kernel of T, and the rank of T is the
dimension of the range of T. We now consider some examples.

4.19 example. The right shift operator on `∞(N) is defined by

S(x1, x2, x3, . . .) = (0, x1, x2, . . .),

and the left shift operator T by

T(x1, x2, x3, . . .) = (x2, x3, x4, . . .).

These maps have norm one (exercise!). Their matrices are the infinite-dimensional
Jordan blocks

[S] =


0 0 0 . . .
1 0 0 . . .
0 1 0 . . .
...

...
...

. . .

 , [T] =


0 1 0 . . .
0 0 1 . . .
0 0 0 . . .
...

...
...

. . .

 .

The kernel of S is {0} and the range of S is the subspace

RanS = {(0, x2, x3, . . .) ∈ `∞(N)}.

The range of T is the whole space `∞(N), and the kernel of T is the one-
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dimensional subspace

ker T = {(x1, 0, 0, . . .) : x1 ∈ R}.

The operator S is one-to-one but not onto, and T is onto but not one-to-one.
This cannot happen for linear maps T : X → X on a finite-dimensional space
X, such as X = Rn. In that case, ker T = {0} if and only if RanT = X.

4.20 example. Let X = C([0, 1]) with the sup norm. We define the integral
operator K : X → X by

K f (x) =
x∫

0

f (y)dy. (45)

An integral operator like this one, with a variable range of integration, is called
a Volterra integral operator. Then, K is bounded, with ‖K‖ ≤ 1, since

‖K f ‖∞ ≤ sup
0≤x≤1

x∫
0

| f (y)|dy ≤
1∫

0

| f (y)|dy ≤ ‖ f ‖∞.

In fact, ‖K‖ = 1, since K(1) = x, and ‖x‖∞ = 1. The range of K is the set of
continuously differentiable functions on [0, 1] that vanish at x = 0. This is a
linear subspace of C([0, 1]) but it is not closed. The lack of closure of the range
of K is due to the smoothing effect of K, which maps continuous functions to
differentiable functions.

4.21 theorem. Let X, Y, Z be normed linear spaces. If T ∈ L(X, Y) and S ∈
L(Y, Z), then ST ∈ L(X, Z), and

‖ST‖ ≤ ‖S‖‖T‖.

Proof. Exercise.

4.22 example. Consider the linear maps A, B on R2 with matrices

A =

(
λ 0
0 0

)
, B =

(
0 0
0 µ

)
.

These matrices have the Euclidean (or sum, or maximum) norms ‖A‖ = λ
and ‖B‖ = µ, but ‖AB‖ = 0.

4.23 example. Let X = C([0, 1]) equipped with the supremum norm. For
kn(x, y) a real-valued continuous function on [0, 1] × [0, 1], we define Kn ∈
L(X) by

Kn f (x) =
1∫

0

kn(x, y) f (y)dy.
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Then Kn → 0 in norm as n→ +∞ if

‖Kn‖ = max
x∈[0,1]

1∫
0

|kn(x, y)|dy→ 0 as n→ +∞.

As example satisfying the above condition, take kn(x, y) = xyn.

4.3 Compact operators

A particularly important class of bounded operators is the class of compact
operators.

4.24 definition. A linear operator T : X → Y is compact if T(B) is a precom-
pact subset of Y for every bounded subset B of X.

An equivalent formulation is that T is compact if and only if every bounded
sequence (xn) in X has a subsequence (xnk )k such that (Txnk )k converges in
Y. We do not require the range of T to be closed, so T(B) need not be compact
even if B is a closed bounded set. Another equivalent formulation is that T
is compact if and only if T maps the closed unit ball {‖x‖ ≤ 1} of X into a
precompact subset of Y.

4.25 example. We propose immediately a classical example of a compact lin-
ear operator on an infinite dimensional Banach space. Let X = C([0, 1]) and
consider the operator T ∈ L(C) defined by

(T f )(x) =
x∫

0

f (y)dy,

called Volterra operator. It is an easy exercise to verify that T is linear and
bounded. Now, let f ∈ X be in a bounded set B ⊂ X. Since B is bounded,
there is a constant M such that ‖ f ‖∞ ≤ M for all f ∈ B. Now, for all f ∈ B,
we have that T f is differentiable. Moreover,

‖(T f )′‖∞ ≤ sup
x∈[0,1]

x∫
0

| f (y)|dy ≤ ‖ f ‖∞ ≤ M.

Since (T f )(0) = 0 for all f ∈ B, we can use example 2.17 (consequence of
Arzelá-Ascoli) to show that T(B) is precompact. Hence, T is a compact oper-
ator.

We leave the proof of the following properties of compact operators as an
exercise.

4.26 proposition. Let X, Y, Z be Banach spaces.

(a) If S, T ∈ L(X, Y) are compact, then any linear combination of S and T is
compact.
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(b) Let S ∈ L(X, Y) and T ∈ L(Y, Z). If S is bounded and T is compact, or if S is
compact and T is bounded, then TS ∈ L(X, Z) is compact.

(c) If T is bounded and RanT has finite dimension, then T is compact. In this case
we say that T is a finite-rank operator.

4.27 example. If (Tn) is a sequence of compact operators in L(X, Y) con-
verging uniformly to T, then T is compact. To see this, let ε > 0 and let
Nε ∈ N such that ‖T − TNε‖ < ε/2. Let B be the closed unit ball of X. Since
TNε(B) is precompact, then TNε(B) is totally bounded. Hence, there exists
y1, . . . , yMε ∈ TNε(B) such that TNε(B) ⊂ ⋃Mε

i=1 Bε/2(yi). Therefore, for a given
x ∈ B there exists i ∈ {1, . . . , Mε} such that ‖TNε x− yi‖ < ε/2. Hence,

‖Tx− yi‖ ≤ ‖Tx− TNε x‖+ ‖TNε x− yi‖ < ε.

This proves that T(B) is totally bounded, i. e. T(B) is precompact.

As a consequence of the previous example, if X ad Y are Banach spaces
the space K(X, Y) of compact linear operators from X into Y is a closed linear
subspace of L(X, Y). Moreover, if (Tn) is a sequence of finite-rank operators
converging uniformly to T, then T is a compact operator. The converse is
also true for compact operators on many Banach spaces, including Hilbert
spaces, although there exists separable Banach spaces on which some compact
operators cannot be approximated with finite-rank operators.

We conclude this section with some important considerations on the com-
pactness of the unit ball on infinite dimensional spaces. The compact sets of
the Euclidean space Rd are characterised as those sets which are closed and
bounded, according to Heine-Borel’s theorem. This property is valid for all
finite dimensional normed spaces. Indeed, this property characterises finite di-
mensional normed spaces, i. e. if the dimension of the space is infinite such property
is no longer true. This is seen more precisely in the next theorem. First we prove
the following Lemma.

4.28 lemma (Riesz’s lemma). Let (E, ‖ · ‖) be a normed space. Let M ⊂ E be a
proper closed linear subspace of E. Let α ∈ (0, 1). Then, there exists a vector xα ∈ E
such that ‖xα‖ = 1 and inf{‖x− xα‖ , x ∈ M} > α.

Proof. For a given y ∈ E \M, let d = infx∈M ‖x− y‖. Since M is closed, d > 0.
Indeed, if d = 0 there would be no open balls centered on x entirely contained
in E \M, which would contradict E \M being an open set. Hence, since α ∈
(0, 1), there exists a vector x0 ∈ M with d ≤ ‖y− x0‖ ≤ d

α . Set xα = y−x0
‖y−x0‖

.
Clearly ‖xα‖ = 1. Moreover, for all x ∈ M we have

‖x− xα‖ =
∥∥∥∥x− y− x0

‖y− x0‖

∥∥∥∥ =

∥∥∥∥‖y− x0‖x + x0 − y
‖y− x0‖

∥∥∥∥ ≥ α

d
‖‖y− x0‖x+ x0− y‖.

Since ‖y− x0‖x + x0 ∈ M, the quantity ‖‖y− x0‖x + x0 − y‖ is bigger than d,
and therefore ‖x− xα‖ ≥ α.
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We are now ready to prove the next important theorem.

4.29 theorem. Let (E, ‖ · ‖) be a normed space, and let B1(0) be the closed unit ball
of E. Then, B1(0) is compact if and only if the dimension of E is finite.

Proof. Assume first that E is finite dimensional, let {e1, . . . , ed} be a basis for
E. Let us set for x = ∑d

i=1 xiei, T(x) = (x1, . . . , xd) ∈ Rd. The linear map
T : E→ Rd is a homeomorphism. Then supx∈B1(0)

‖x‖2 < +∞, where ‖x‖2 =(
∑d

i=1 |xi|2
)1/2

. The norm ‖ · ‖2 is the Euclidean norm on Rd. Hence, we can

apply Heine-Borel theorem on Rd: since the set {T(x)}x∈B1(0) is closed and
bounded in the Euclidean norm, Heine-Borel theorem gives that the set is
compact. Since T−1 is continuous, B1(0) is also compact.

Now, assume that B1(0) is compact. Assume by contradiction that E is not
finite dimensional. Pick an element x1 ∈ E with ‖x1‖ = 1, and denote by S1 the
linear subspace generated by x1. According to Riesz’s lemma 4.28, there exists
an element x2 ∈ E with ‖x2‖ = 1 and infx∈S1 ‖x − x2‖ > 1

2 . Now let S2 be
the linear subspace generated by x1 and x2. Since E is not finite dimensional,
S2 is a proper subspace, and hence there exists x3 ∈ E with ‖x3‖ = 1 and
infx∈S2 ‖x− x3‖ > 1

2 . If we proceed inductively, we can construct a sequence
xn with ‖xn‖ = 1 which satisfies ‖xn − xm‖ > 1

2 for all n 6= m. Therefore,
no convergent subsequence can be extracted from {xn}n, i. e. B1(0) is not
compact, a contradiction.

4.4 Dual spaces

The dual space of a linear space consists of the scalar-valued linear maps on
the space. Duality methods play a crucial role in many parts of analysis. In this
subsection we consider real linear spaces for definiteness, but all the results
hold for complex linear spaces too.

4.30 definition. A scalar-valued linear map from a linear space X to R is
called a linear functional, or linear form on X. The space of linear functionals
on X is called the algebraic dual space of X, and the space of continuous linear
functionals on X is called the topological dual space of X.

In terms of notation, we denote by X∗ the algebraic dual and by X′ the
topological dual. From now on, the topological dual will be called simply the
dual space. In fact, X′ = L(X, R). A linear functional ϕ ∈ X∗ belongs to X′ if
there is a constant M such that

|ϕ(x)| ≤ M‖x‖ for all x ∈ X,

and we define the dual norm of ϕ as the operator norm of ϕ, that is

‖ϕ‖ = sup
x 6=0

|ϕ(x)|
‖x‖ = sup

‖x‖=1
|ϕ(x)|.
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Clearly, X∗ is a linear space with the obvious structure, whereas X′ is a Ba-
nach space because R is complete. If X is finite dimensional, then X′ = X∗.
Moreover, in this case X∗ is linearly isomorphic to X. To see this, pick a basis
{e1, . . . , en} of X. The map ωi : X → R defined by

ωi

(
n

∑
j=1

xjej

)
= xi

is an element of the algebraic dual space X′. The linearity of ωi is obvious.
The action of a general element ϕ of the dual space, ϕ : X → R, on a vector
x ∈ X is given by a linear combination of the components of x, since

ϕ

(
n

∑
i=1

xiei

)
=

n

∑
i=1

ϕixi,

where ϕi = ϕ(ei) ∈ R. It follows that, as a map,

ϕ =
n

∑
i=1

ϕiωi.

Thus, {ω1, . . . , ωn} is a basis for X′, called the dual basis of {e1, . . . , en}, and
both X′ and X∗ are linearly isomorphic to Rn. The dual basis has the property
that

ωi(ej) = δij,

where δij is the Kronecker delta function, defined by

δij =

{
1 if i = j
0 if i 6= j.

Although a finite-dimensional space is linearly isomorphic with its dual space,
there is no canonical way to identify the space with its dual; there are many
isomorphisms, depending on the arbitrary choice of a basis. In the following
chapters, we will study Hilbert spaces, and show that the topological dual
space of a Hilbert space can be identified with the original space in a natural
way through the inner produce. The dual of an infinite-dimensional Banach
space is, in general, different from the original space.

4.31 example. Let p ∈ [1,+∞). We want to prove that the dual of `p(N) is
(essentially) `q(N) where 1/p + 1/q = 1. We do it in many steps.

Step 1. For all x = (xn) ∈ `p(N), we have x = ∑+∞
i=1 xiei, where ei denotes

the usual unit vector with 0’s everywhere except at the i-th component equal
to 1. To prove that, we observe that ∑n

i=1 xiei ∈ `p for all n ∈N, so∥∥∥∥∥x−
n

∑
i=1

xiei

∥∥∥∥∥
p

`p

=
+∞

∑
i=n+1

|xi|p,
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and the last term converges to zero as n → +∞ since the series ∑+∞
i=1 |xi|p is

convergent, as a consequence of x ∈ `p(N). Note that this property is false for
p = +∞ (for example, use x being a constant sequence).

Step 2. Let f ∈ (`p(N))′. Then there exists a y ∈ `q(N), y = (αi) such that
f (x) = ∑+∞

i=1 xiαi. To see this, let αi = f (ei). For all x ∈ `p(N), by continuity
and linearity of f , we have

f (x) =
+∞

∑
i=1

xi f (ei) =
+∞

∑
i=1

xiαi.

Consider now the case p ∈ (1,+∞). For n ∈N, define xn = ∑n
i=1 |αi|q/psign(αi)ei.

Note that sign(α)α = |α|. We have

‖xn‖`p =

(
n

∑
i=1
|αi|q

)1/p

,

and

f (xn) =
n

∑
i=1
|αi|q/psign(αi) f (ei) =

n

∑
i=1
|αi|q/p+1 =

n

∑
i=1
|αi|q.

But since f is bounded, | f (xn)| ≤ ‖ f ‖(`p)′‖xn‖`p , so

n

∑
i=1
|αi|q ≤ ‖ f ‖(`p)′

(
n

∑
i=1
|αi|q

)1/p

.

Rearranging, we get(
n

∑
i=1
|αi|q

)1/q

≤ ‖ f ‖(`p)′ ,

i.e. the sequence y = (αi) belongs to `q and satisfies ‖y‖`q ≤ ‖ f ‖(`p)′ . In the
case p = 1, define xn = sign(αn)en. So ‖xn‖`1 ≤ 1 and f (xn) = αnsign(αn) =
|αn|, which shows

|αn| = | f (xn)| ≤ ‖ f ‖(`1)′‖xn‖`1 ≤ ‖ f ‖(`1)′ .

Hence, y = (αi) ∈ `∞(N) and ‖y‖`∞ ≤ ‖ f ‖(`1)′ .

Step 3. Let y = (αi) ∈ `q(N). We prove that y defines a functional fy ∈
(`p(N))′ as follows

fy(x) =
+∞

∑
i=1

xiαi, for all x = (xi) ∈ `p(N),

which has the property ‖ fy‖(`p)′ = ‖y‖`q . The linearity of fy is trivial and left
as an exercise. To prove that fy is bounded, let us observe by Hölder inequality
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(discrete version),

| fy(x)| ≤
+∞

∑
i=1
|xi||αi| ≤

(
+∞

∑
i=1
|xi|p

)1/p (+∞

∑
i=1
|αi|q

)1/q

= ‖x‖`p‖y‖`q .

The above computation also proves that ‖ f ‖(`p)′ ≤ ‖y‖`q . Now, clearly fy(ei) =
αi, so the same analysis in Step 1 applies and in particular ‖y‖`q ≤ ‖ f ‖(`p)′ ,
which shows that ‖y‖`q = ‖ f ‖(`p)′

The example 4.31 shows that, given p ∈ [1,+∞) there is a map F : `q(N)→
(`p(N))′, with 1/q + 1/p = 1, defined as follows: for all y ∈ `q(N) set F(y) ∈
(`p(N))′ defined by

F(y)(x) =
+∞

∑
i=1

xiyi,

with the following properties:

• F is one-to-one and onto (proven in example 4.31)

• F is linear (easy exercise)

• F is an isometry, i.e. ‖y‖ = ‖F(y)‖ (proven in example 4.31).

So, essentially, the two normed linear spaces `q(N) and (`p(N))′ are identi-
fied.

The above identification is false is p = +∞. It can be proven that the dual of
the space c0 of convergent sequences with limit equal to zero with the ‖ · ‖`∞

norm is a Banach space. Moreover, the dual space of c0 is `1. The identification
(in the above sense) of the dual of `∞ goes beyond the scopes of this course.

We continue this subsection with the goal of performing a similar identifi-
cation for the dual of the Lp spaces defined in subsection 3.4. Let Ω ⊂ Rd be
a measurable set. Suppose 1 ≤ p ≤ +∞ and g ∈ Lq(Ω) with 1/p + 1/q = 1.
We define ϕg : Lp(Ω)→ R by

ϕg( f ) =
∫
Ω

f (x)g(x)dx for every f ∈ Lp(Ω).

Hölder’s inequality implies that ϕg is a bounded linear functional on Lp, with

‖ϕg‖(Lp)′ = sup
‖ f ‖Lp≤1

|ϕg( f )| ≤ sup
‖ f ‖Lp≤1

‖g‖Lq‖ f ‖Lp ≤ ‖g‖Lq .

Now, set f0 = |g|q−2g. We have

ϕg( f0) =
∫
Ω

|g(x)|qdx = ‖g‖q
Lq ,
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and

‖ f0‖Lp =

∫
Ω

|g(x)|p(q−1)dx

1/p

=

∫
Ω

|g(x)|qdx

1/p

= ‖g‖q/p
Lq ,

which implies that f0 ∈ Lp(Ω) and

‖ f0‖Lp‖g‖Lq = ‖g‖q/p+1
Lq = ‖g‖q

Lq = |ϕg( f0)|,

hence ‖ϕg‖(Lp)′ = ‖g‖Lq .

4.32 theorem (Riesz representation Theorem for Lp spaces). Let Ω ⊂ Rd be a
measurable set. Let 1 ≤ p < +∞. Then, for every ϕ ∈ (Lp(Ω))′ there is a g ∈ Lq(Ω)
with 1/p + 1/q = 1 such that

ϕ( f ) =
∫
Ω

f (x)g(x)dx,

for all f ∈ Lp(Ω). Moreover, ‖ϕ‖(Lp)′ = ‖g‖Lq .

We will not give the proof of the above theorem. The identification per-
formed before the statement of the theorem only shows that the multiplica-
tion functional

∫
f gdx with g ∈ Lq is a bounded (linear) functional on Lp, and

that the map associating g ∈ Lq to ϕ ∈ (Lp)′ is an isomorphism. It remains to
show that such a map is onto, which goes beyond our scopes.

According to Theorem 4.32, we may identify (Lp)′ with Lq with 1/p +
1/q = 1. When p = q = 2, we recover the result of the Riesz representation
theorem on a Hilbert space, which we will prove later on. The dual of L1 is
L∞, but the dual of L∞ is strictly larger than L1.

4.33 example. Consider X = C([a, b]). For any g ∈ L1([a, b]), the formula

ϕ( f ) =
b∫

a

f (x)g(x)dx

defines a continuous linear functional ϕ on X. However, not all continuous
functional are of the above form. For example, if x0 ∈ [a, b], then the evaluation
of f at x0 is a continuous linear functional. That is, if we define δx0 : C([a, b])→
R by

δx0( f ) = f (x0),

then δx0 is a continuous linear functional on C([a, b]) (easy exercise).

Since X′ is a Banach space, we can form its dual space X′′, called the bidual
of X. There is not natural way to identify an element of X with an element of
the dual X′, but we can naturally identify an element of X with an element of

115



4. Introduction to linear operators on Banach spaces

the bidual X′′. If x ∈ X, then we define Fx ∈ X′′ by evaluation at x:

Fx(ϕ) = ϕ(x) for every ϕ ∈ X′.

We leave as an exercise to prove that Fx ∈ X′′. In this way, we may regard X as
a subspace of X′′. Indeed, one can prove that the identification X 3 x 7→ Fx ∈
X′′ is isomorphic, i.e. ‖Fx‖X′′ = ‖x‖X (we leave the details as an exercise).
This holds for arbitrary normed spaces X, and in general such identification
is not onto. Now, if all continuous linear functionals F on X′ are of the form
F(ϕ) = ϕ(x) for some x ∈ X, then X and X′′ essentially coincide under the
identification x 7→ Fx, and we say that X is reflexive.

If 1 < p < +∞, then (Lp)′′ = Lp and Lp is reflexive, but L1 and L∞ are not
reflexive. Similarly to `p spaces, the situation of L∞ is special. The dual of L∞

is a space of measures, we omit the details and refer to [2].

4.5 An overview of fundamental principles of functional analysis

We provide, in this section, a brief overview of some results that are of great
relevance in functional analysis, although we shall only prove some of them.

We start with a famous Theorem by Hahn and Banach, which basically
says that in any linear space we can always extend a linear functional defined
on a linear subspace in a suitable way.

A remark on the notation. In functional analysis the “action” of a func-
tional f ∈ X′ on an element x ∈ X is often denoted by

〈 f , x〉X′×X = 〈 f , x〉 .

4.34 theorem (Hahn-Banach analytic form). Let E be a real linear space. Let
p : E→ R be a function satisfying

(i) p(λx) = λp(x) for all x ∈ E and all λ > 0,

(ii) p(x + y) ≤ p(x) + p(y) for all x, y ∈ E.

Let G ⊂ E be a linear subspace of E and let g : G → R be a linear functional defined
on G such that

g(x) ≤ p(x) for all x ∈ G.

Then, there exists a linear functional f defined on all of E that extends g, i. e. g(x) =
f (x) for all x ∈ G, and such that f (x) ≤ p(x) for all x ∈ E.

Here are some important consequences of the above theorem.

4.35 corollary. Let E be a normed space. Let G ⊂ E be a linear subspace. If
g : G → R is a continuous linear functional, then there exists f ∈ E′ that extends g
and such that

‖ f ‖E∗ = sup
x∈G, ‖x‖≤1

|g(x)| = ‖g‖G′ .
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Proof. Use Theorem 4.34 with p(x) = ‖g‖G′‖x‖.

4.36 corollary. Let E be a normed space. For every x0 ∈ E there exists f0 ∈ E′

such that

‖ f0‖ = ‖x0‖, and 〈 f0, x0〉 = ‖x0‖2.

Proof. Use Corollary 4.35 with G = {tx0 : t ∈ R} and g(tx0) = t‖x0‖2, so
that ‖g‖G′ = ‖x0‖.

In general, the element f0 ∈ E∗ in Corollary 4.36 is not unique for a given
x0 ∈ E. It is unique in special cases, e. g. E a Hilbert space or an Lp space
p ∈ (1,+∞), as we shall see later on. In general, for an element x0 ∈ E we set

F(x0) = { f0 ∈ E′ : ‖ f0‖ = ‖x0‖ and 〈 f0, x0〉 = ‖x0‖2}.

The multi-valued map E 3 x0 7→ F(x0) ∈ P(E′) is called the duality map from
E into E′.

4.37 corollary. Let x0 ∈ E. If f (x0) = 0 for all f ∈ E′, then x0 = 0.

Proof. Assume by contradiction that x0 6= 0. Then, by Corollary 4.36 there
exists f0 ∈ E′ with f0 6= 0 such that ‖ f0‖ = ‖x0‖ and 〈 f0, x0〉 = ‖x0‖2 6= 0,
and this is a contradiction.

4.38 corollary. Let E be a normed space. For every x ∈ E we have

‖x‖ = sup
f∈E′ , ‖ f ‖≤1

|〈 f , x〉| = max
f∈E′ , ‖ f ‖≤1

|〈 f , x〉|.

Proof. The assertion is trivial if x = 0. If x 6= 0, it is clear that

sup
f∈E′ , ‖ f ‖≤1

|〈 f , x〉| ≤ ‖x‖.

On the other hand, we know from Corollary 4.36 that there is some f0 ∈ E′

such that ‖ f0‖ = ‖x‖ and 〈 f0, x〉 = ‖x‖2. Set f1(x) := f0(x)
‖x‖ . We have ‖ f1‖ = 1

and 〈 f1, x〉 = ‖x‖.

The above corollary is quite important, because is allows to state the fol-
lowing “duality principle”. Given a Banach space X and its dual X′, by defi-
nition of dual norm ‖ f ‖ for some f ∈ X′ we have

‖ f ‖ = sup
‖x‖=1

|〈 f , x〉| .

The above corollary somehow implies the opposite, namely that for all x ∈ X
we have

‖x‖ = sup
‖ f ‖=1

|〈 f , x〉| .
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We now state the so-called Baire’s cathegory theorem, a very important
but, at the same time, very abstract result, which has substantial consequences
on the theory of linear operators.

Recall that a subset B of a metric space X is called nowhere dense if its
closure has empty interior.

4.39 definition. A metric space X is called a Baire first category space if X can
be written as the union of a countable family of nowhere dense closed sets.
The space X is called a Baire second category space if it is not a first category
space, i. e. if given a sequence closed subsets {Fn}n∈N in X, if X =

⋃+∞
n=1 Fn

this implies that at least one of the Fn has a nonempty interior.

4.40 theorem (Baire). Let X be a nonempty complete metric space. Then X is a
Baire second category space.

A first important consequence is the following Theorem.

4.41 theorem (Banach-Steinhaus, uniform boundedness principle). Let E and
F be two Banach spaces and let {Ti}i∈I be a family (not necessarily countable) of
continuous linear operators from E into F. Assume that

sup
i∈I
‖Ti(x)‖ < +∞ for all x ∈ E. (46)

Then,

sup
i∈I
‖Ti‖L(E,F) < +∞. (47)

In other words, there exists a constant c such that

‖Ti(x)‖ ≤ c‖x‖ for all x ∈ E and for all i ∈ I.

Proof. For every n ≥ 1 let

Xn = {x ∈ E : ‖Tix‖ ≤ n for all i ∈ I}.

Clearly, Xn is closed, and from the assumption (46) we have⋃
n≥1

Xn = E.

From the Baire category theorem 4.40, the interior of Xn0 is non empty for at
least one n0 ∈N. Therefore there exists a ball Br(x0) ⊂ Xn0 for some x0 ∈ Xn0

and some r > 0. This implies

‖Ti(x0 + rz)‖ ≤ n0 for all i ∈ I and for all z ∈ B1(0).
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Therefore, for all x ∈ E with x 6= 0 we have

r
‖x‖‖Ti(x)‖ =

∥∥∥∥Ti

(
rx
‖x‖

)∥∥∥∥ ≤ ∥∥∥∥Ti

(
x0 +

rx
‖x‖

)∥∥∥∥+ ‖Ti(x0)‖ ≤ n0 + ‖Ti(x0)‖,

and this proves the assertion.

4.42 corollary. Let E and F be two Banach spaces. Let {Tn}n be a sequence of
continuous linear operators from E into F such that for every x ∈ E, Tn(x) converges
to a limit denoted by T(x) as n→ +∞. Then we have

(a) supn ‖Tn‖L(E,F) < +∞,

(b) T ∈ L(E, F),

(c) ‖T‖L(E,F) ≤ lim infn→+∞ ‖Tn‖L(E,F).

Proof. (a) follows directly from Theorem 4.41, and thus there exists a constant
c such that

‖Tn(x)‖ ≤ c‖x‖ for all n ∈N and for all n ∈ E.

Hence, for all n ∈N,

‖T(x)‖ ≤ ‖(T − Tn)(x)‖+ ‖Tn(x)‖ ≤ c‖x‖+ ‖(T − Tn)(x)‖,

and taking the limit as n→ +∞ we get

‖T(x)‖ ≤ c‖x‖ for all x ∈ E.

Since T is clearly linear, we obtain (b).
Finally, we have

‖Tn(x)‖ ≤ ‖Tn‖L(E,F)‖x‖.

By taking the lim inf on both sides, recalling that Tn(x) converges to T(x), we
get

‖T(x)‖ ≤ lim inf
n→+∞

‖Tn‖L(E,F)‖x‖,

which proves (c).

Another important consequence of Baire’s cathegory Theorem is the fol-
lowing result, the proof of which is non trivial and we will omit it.

4.43 theorem (Open mapping theorem). Let E an F be two Banach spaces and
let T be a continuous linear operator from E into F that is bijective (i. e. one-to-one
and surjective). Then T−1 is also continuous from F into E.

An important consequence of Theorem 4.43 is the following.
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4.44 corollary. Let E be a vector space provided with two norms ‖ · ‖1 and ‖ · ‖2.
Assume that E is a Banach space with both norms and that there exists a constant
C ≥ 0 such that

‖x‖2 ≤ C‖x‖1 for all x ∈ E.

Then the two norms are equivalent, i. e. there is a constant c > 0 such that

‖x‖1 ≤ c‖x‖2 for all x ∈ E.

Proof. Apply the Open Mapping Theorem with

E = (E, ‖ · ‖1), F = (E, ‖ · ‖2), T = I.

4.45 exercise. Let E = Lq(Ω) with p > 1 and with Ω a bounded measurable
subset of Rd. Let q > p ≥ 1. We know there exists a constant C such that

‖ f ‖Lp ≤ C‖ f ‖Lq .

However, the two norms are clearly not equivalent on Lp as it can be easily
shown with some specific examples. Why isn’t that in contradiction with the
previous corollary?

The following result is an application of the open mapping theorem. It
provides a useful way to show that an operator T has closed range, a property
that is sometimes useful in the applications. The theorem states that T has
closed range if one can estimate the norm of the solution x of the equation
Tx = y in terms of the norm of the right-hand side y.

4.46 proposition. Let T : X → Y be a bounded linear map between Banach spaces
X, Y. The following statements are equivalent:

(a) There is a constant c > 0 such that

c‖x‖ ≤ ‖Tx‖ for all x ∈ X,

(b) T has closed range, and the only solution of the equation Tx = 0 is x = 0.

Proof. First, suppose that T satisfies (a). Then Tx = 0 implies that ‖x‖ = 0,
so x = 0. To show that RanT is closed, suppose that (yn) is a convergent
sequence in RanT, with yn → y ∈ Y. Then there is a sequence (xn) in X such
that Txn = yn. The sequence (xn) is Cauchy, since (yn) is Cauchy and

‖xn − xm‖ ≤
1
c
‖T(xn − xm)‖ =

1
c
‖yn − ym‖.

Hence, since X is complete, we have xn → x for some x ∈ X. Since T is
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bounded, we have

Tx = lim
n→+∞

Txn = lim
n→+∞

yn = y,

so y ∈ RanT and RanT is closed.

Conversely, suppose that T satisfies (b) Since RanT is closed, it is a Banach
space. Since T : X → Y is one-to-one, the operator T : X → RanT os a one-to-
one, onto map between Banach spaces. The open mapping theorem implies
that T−1 : RanT → X is bounded, and hence there is a constant C > 0 such
that

‖T−1y‖ ≤ C‖y‖ for all y ∈ RanT.

Setting y = Tx, we see that c‖x‖ ≤ ‖Tx‖ for all x ∈ X, where c = 1/C.

4.47 example. Consider the operator T = I + K on C([0, 1]), where K is de-
fined in (45). The range of K is the whole space C([0, 1]) and is therefore
closed. To prove this statement, we observe that g = T f if and only if

f (x) +
x∫

0

f (y)dy = g(x).

Writing F(x) =
∫ x

0 f (y)dy, we have F′ = f and

F′ + F = g, F(0) = 0.

The solution of this initial value problem is

F(x) =
x∫

0

ey−xg(y)dy.

Differentiating this expression with respect to x, we find that f is given by

f (x) = g(x)−
x∫

0

ey−xg(y)dy.

Thus, the operator T = I + K is invertible on C([0, 1]) and

(I + K)−1 = I− L,

where L is the Volterra integral operator

Lg(x) =
x∫

0

ey−xg(y)dy.

4.48 example. Consider the Volterra integral operator K : C([0, 1])→ C([0, 1])
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defined in (45). Then

K[cos(nπx)](x) =
x∫

0

cos(nπy)dy =
sin(nπx)

nπ
.

We have ‖ cos(nπx)‖∞ = 1 for every n ∈ N, but ‖K[cos(nπx)]‖∞ → 0 as
n → +∞. Thus, it is not possible to estimate ‖ f ‖ in terms of ‖K f ‖, consistent
with the fact that the range of K is not closed.

4.49 theorem (Closed graph theorem). Let E and F be two Banach spaces. Let T
be a linear operator from E into F. Assume that the graph of T

G(T) = {(x, T(x)) ∈ E× F : x ∈ E}

is closed in E× F. Then T is continuous.

Proof. Consider, on E, the two norms

‖x‖1 = ‖x‖E + ‖T(x)‖F, ‖x‖2 = ‖x‖E

(the norm ‖ · ‖1 is called the graph norm). We claim that E is a Banach space
with the norm ‖ · ‖1. To see this, let {xn}n be a Cauchy sequence in the norm
‖ · ‖1. This means that xn is a Cauchy sequence in ‖ · ‖E and T(xn) is a Cauchy
sequence in ‖ · ‖F. Since both E and F are complete, xn → x in ‖ · ‖E and
T(xn) → y for some x ∈ E and y ∈ F. Now, since G(T) is closed, the element
(x, y) ∈ E× F belongs to G(T), i. e. y = T(x). This proves that xn converges
to x in the graph norm.

Now, E is also a Banach space for the norm ‖ · ‖2. Hence, we can apply
Corollary 4.44, which implies that the two norms are equivalent, and thus
there exists a constant c > 0 such that ‖x‖1 ≤ c‖x‖2. This implies ‖T(x)‖F ≤
c‖x‖E as desired.

4.50 remark. The converse of the above statement is obviously true, since the
graph of a any continuous map (linear or not) is closed.

4.6 Weak topologies and weak convergences

4.51 exercise. On a given set X one may consider two distinct topologies τ
and σ. We say that τ is weaker than σ (or equivalently that σ is stronger than τ)
if τ ⊂ σ. Prove that if τ is weaker than σ then every sequence xn converging
to x in σ converges to x in τ too.

Let (E, ‖ · ‖) be a normed space. Let us, for the moment, ignore the usual
topology on E induced by the norm ‖ · ‖.

For a given family F of maps f : E → R, one can consider the coarsest
topology τ that makes all maps f ∈ F continuous. Here R is considered as
topological space with the usual Euclidean topology.

The topology τ is constructed as the topology generated by the inverse
images of all open sets in R via all maps f ∈ F . More in detail, one considers
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the family C = { f−1(O) : O ⊂ R open, f ∈ F} and take first the family I of
the intersection of finitely many elements in C.

Finally, one takes τ as the union of all sets in I . Such topology is denoted
by τ = τ(C), and is called the inverse limit topology of F . (Exercise: show τ(C)
is a topology).

The set C is called a sub-basis for τ. More precisely, we say that a set C
is a sub-basis for a given topology τ if τ is the coarsest (weakest) topology
containing C. Moreover, the family I of finite intersections in of sets in C is a
basis for the topology τ. This means that every open set in τ(C) can be written
as union of sets in I (exercise!).

Finally, for a given point x ∈ E, the family

Ux = { f−1
1 (O1) ∩ . . . ∩ f−1

k (Ok) : O1, . . . , Ok

open in R, f1, . . . , fk ∈ F , with f j(x) ∈ Oj for all j = 1, . . . , k}

is a basis of neighborhoods for x in the topology τ, which means that every open
neighborhood of x in τ contains an open set of the family Ux.

4.52 exercise. With the notation above, prove that a sequence {xn}n ⊂ E
converges to x ∈ E in τ(C) if and only if f (xn)→ f (x) for all f ∈ F .

Solution: If xn → x in τ, then f (xn) → f (x) for all f ∈ F because all
f ∈ F are continuous in the topology τ (the image of an open set O via f is
open in τ(C)!). Vice versa, assume f (xn) → f (x) for all f ∈ F . Let Ux ∈ Ux
be a basic neighborhood of x, in particular, Ux = f−1

1 (O1) ∩ . . . ∩ f−1
k (Ok)

for some f1, . . . , fk ∈ F and some open sets O1, . . . , Ok ⊂ R with fi(x) ∈ Oi
for all i = 1, . . . , k. By assumption, fi(xn) → fi(x), hence there exist integers
Ni ∈ N such that fi(xn) ∈ Oi for all n ≥ Ni, for all i = 1, . . . , k. Set N :=
max{N1, . . . , Nk}. Then, for all n ≥ N one has fi(xn) ∈ Oi for all i = 1, . . . , k,
i. e. xn ∈ f−1

1 (O1) ∩ . . . ∩ f−1
k (Ok), i. e. xn ∈ Ux. This implies that xn → x in τ.

4.53 exercise. With the notation above, let Z be a topological space and let
ψ : Z → E. Then ψ is continuous if and only if f ◦ ψ is continuous from Z into
R for every f ∈ F .

Solution: If ψ is continuous then f ◦ ψ is also continuous for all f ∈ F (all
the f ∈ F are continuous in τ, and the composition of continuous functions
is continuous). Vice versa, assume f ◦ ψ is continuous for every f ∈ F . We
have to prove that ψ−1(U) is open for all sub-basic open sets U ⊂ E in the
τ topology. But we know that sub basic open sets in τ are all of the form
U = f−1(O) for some f ∈ F and some O ∈ R open. Hence, ψ−1(U) =
ψ−1( f−1(O)) = ( f ◦ ψ)−1(O), and the latter is an open set by the continuity
of f ◦ ψ.

Let E be a normed space and let f ∈ E′. We denote by ϕ f : E → R the
linear functional ϕ f (x) = 〈 f , x〉. As f runs through E∗ we obtain a collection
{φ f } f∈E′ of maps from E into R. We now ignore the usual topology induced
by ‖ · ‖ on E and define a new topology on the set E as follows.

4.54 definition. The weak topology σ(E, E′) on E is the inverse limit topology
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of the family of maps {φ f } f∈E′ .

4.55 remark. Note that all f ∈ E∗ are continuous functionals on (E, ‖ · ‖). Since
σ(E, E′) is the coarsest topology that makes all f ∈ E′ continuous, we deduce
that the weak topology σ(E, E′) on E is weaker than the usual topology induced on
E by the norm ‖ · ‖, which we will from now on refer to as the strong topology
on E.

4.56 proposition. Let x0 ∈ E. Given ε > 0 and a finite set { f1, f2, . . . , fk} ⊂ E′,
consider

V = V( f1, . . . , fk; ε) = {x ∈ E : |〈 fi, x− x0〉| < ε, for all i = 1, . . . , k}.

Then V is a neighborhood of x0 for the topology σ(E, E′). Moreover, we obtain a basis
of neighborhoods of x0 by varying ε, k, and the fi’s in E′.

Proof. From the discussion above we already know that the sets V in the state-
ment are a basis of neighborhoods for x0 if the statement |〈 fi, x− x0〉| < ε is
replaced by fi ∈ Oi for some Oi open neighborhood of fi(x0). The statement
follows by recalling that the open sets of R are characterised as the sets O
such that for all y ∈ O there exists an open interval (y − ε, y + ε) ⊂ O for
some ε > 0. And this proves the assertion.

Let {xn}n be a sequence on E. If xn converges to x ∈ E in the σ(E, E′)
topology we shall use the notation

xn ⇀ x.

We shall sometimes say xn ⇀ x weakly in σ(E, E′). The convergence of xn
to x in the usual topology will be sometimes emphasised by saying xn → x
strongly, meaning ‖xn − x‖ → 0.

4.57 proposition. Let {xn}n ⊂ E be a sequence in E. Then

(i) xn ⇀ x weakly in σ(E, E′) is and only if 〈 f , xn〉 → 〈 f , x〉 for all f ∈ E′.

(ii) If xn → x strongly, then xn ⇀ x weakly in σ(E, E′).

(iii) If xn ⇀ x weakly in σ(E, E′), then {‖xn‖}n is bounded and

‖x‖ ≤ lim inf
n→+∞

‖xn‖.

(iv) If xn ⇀ x weakly in σ(E, E′) and if fn → f strongly in E′ (i. e. ‖ fn − f ‖E′ →
0), then 〈 fn, xn〉 → 〈 f , x〉.

Proof. (i) is a consequence of the Exercise 4.52 and the definition of weak
topology σ(E, E′) on E.

(ii) is a consequence of (i), since

|〈 f , xn〉 − 〈 f , x〉| ≤ ‖ f ‖E′‖xn − x‖.
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4.6. Weak topologies and weak convergences

Alternatively, it is a consequence of the fact that the weak topology is weaker
than the norm topology.

(iii) follows from Theorem 4.41. Indeed, for every n ∈ N define the map
Tn : E′ → R as Tn( f ) = 〈 f , xn〉. Since xn converges weakly to x, for every
f ∈ E′ the real sequence 〈 f , xn〉 is convergent, and hence bounded. There-
fore, for all f ∈ E′ the family Tn( f ) is uniformly bounded in E′ with re-
spect to n ∈ N. Hence, from the Banach-Steinhaus theorem 4.41 we have
supn∈N ‖Tn‖L(E′ ,R) < +∞ and there exists a constant c ∈ R such that

|Tn( f )| = |〈 f , xn〉| ≤ c‖ f ‖E′ , for all n ∈N.

Hence, Corollary 4.38 implies

‖xn‖ = sup
f∈E′ , ‖ f ‖E′≤1

|〈 f , xn〉| ≤ c,

which proves that ‖xn‖ is a bounded sequence. Now, taking the lim infn→+∞
in the inequality |〈 f , xn〉| ≤ ‖ f ‖E′‖xn‖ we obtain

|〈 f , x〉| ≤ ‖ f ‖E′ lim inf
n→+∞

‖xn‖,

which implies, once again by Corollary 4.38,

‖x‖ = sup
‖ f ‖≤1

|〈 f , x〉 ≤ lim inf
n→+∞

‖xn‖.

(iv) follows from the inequality

|〈 fn, xn〉− 〈 f , x〉| ≤ |〈 fn− f , xn〉|+ |〈 f , xn− x〉| ≤ ‖ fn− f ‖‖xn‖+ |〈 f , xn− x〉|.

Now, due to (iii) ‖xn‖ is uniformly bounded and the first term in the r.h.s.
above goes to zero. The second term goes to zero because of (i).

4.58 proposition. When E is finite-dimensional, the weak topology σ(E, E′) and
the usual topology are the same. In particular, a sequence {xn}n converges weakly if
and only if it converges strongly.

Proof. Since the weak topology is always weaker than the strong topology,
it suffices to check that every strongly open set is weakly open. Let x0 ∈ E
and let U be a neighborhood of x0 in the strong topology. We have to find a
neighborhood V of x0 in the weak topology σ(E, E′) such that V ⊂ U. In other
words, we have to find f1, . . . , fk ∈ E′ and ε > 0 such that

V = {x ∈ E : |〈 fi, x− x0〉| < ε , for all i = 1, . . . , k} ⊂ U.

Fix r > 0 such that Br(x0) ⊂ U. Pick a basis e1, e2, . . . , ek ∈ E such that ‖ei‖ = 1
for all i. Hence, every x ∈ E can be written as x = ∑k

i=1 xiei, and the maps
x 7→ xi are continuous linear functionals on E denoted by fi. Choosing those
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functionals for the neighborhood V we have, for all x ∈ V,

‖x− x0‖ ≤
k

∑
i=1
|〈 fi, x− x0〉| < kε.

Choosing ε = r/k, we obtain V ⊂ Br(x0) ⊂ U as desired.

Open (resp. closed) sets in the weak topology σ(E, E′) are always open
(resp. closed) in the strong topology. In any infinite dimensional space the
weak topology is strictly coarser than the strong topology: i. e., there exist
open (resp. closed) sets in the strong topology that are not open (resp. closed)
in the weak topology. Here are two examples.

4.59 example. The unit sphere S = {x ∈ E : ‖x‖ = 1}, with E infinite
dimensional, is never closed in the weak topology σ(E, E′). More precisely, we
have

Sσ(E,E′)
= B1(0) = {x ∈ E : ‖x‖ ≤ 1},

where Sσ(E,E′) denotes the closure of S in the topology of σ(E, E′). First, let us

check that every x0 ∈ E with ‖x0‖ < 1 belongs to Sσ(E,E′). Indeed, let V be a
neighborhood of x0 in σ(E, E′). We have to prove that V ∩ S 6= ∅. In view of
Proposition 4.56, we may always assume that V has the form

V = {x ∈ E : |〈 fi, x− x0〉| < ε for all i = 1, . . . , k},

with ε > 0 and f1, . . . , fk ∈ E′.
Now, we claim that there exists y0 ∈ E, y0 6= 0, such that 〈 fi, y0〉 = 0 for

all i = 1, . . . , k. Assume by contradiction that the claim is false. We define the
following linear map ϕ : E→ Rk,

ϕ(x) = (〈 f1, x〉, . . . , 〈 fk, x〉) ∈ Rk.

If the claim is false, then for all x ∈ E there exists i ∈ {1, . . . , k} such that
fi(x) 6= 0, which means that for all x ∈ E the vector ϕ(x) ∈ Rk is always
non zero. Hence, ϕ is a linear isomorphism from E onto ϕ(E), and hence
dim(E) = dim(ϕ(E)) ≤ k, which contradicts the assumption that E has infi-
nite dimension. This proves the claim.

Now, the function [0,+∞) 3 t 7→ g(t) := ‖x0 + ty0‖ is continuous on
[0,+∞). Moreover, g(0) < 1, and limt→+∞ g(t) = +∞. Hence, there exists
t0 > 0 such that ‖x0 + ty0‖ = 1, i. e. x0 + t0y0 ∈ S. Now, for all i ∈ 1, . . . , k
we have 〈 fi, (x0 + t0y0) − x0〉 = t0〈 fi, y0〉 = 0 < ε, clearly x0 + t0y0 ∈ V.
Therefore, x0 + t0y0 ∈ V ∩ S.

The above argument proves that S ⊂ B1(0) ⊂ Sσ(E,E′). To prove B1(0) ⊃
Sσ(E,E∗) it suffices to prove that B1(0) is closed in the weak topology. Now, for a
given x ∈ E with ‖x‖ ≤ 1 we have by Corollary 4.38 that sup‖ f ‖≤1 |〈 f , x〉| ≤ 1,
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hence x ∈ {x ∈ E : |〈 f , x〉| ≤ 1} for all f ∈ E′ with ‖ f ‖E′ ≤ 1, i. e.

B1(0) ⊂
⋂

f∈E′ , ‖ f ‖≤1

{x ∈ E : |〈 f , x〉| ≤ 1}.

Moreover, again by Corollary 4.38 every element x ∈ ∩ f∈E∗ , ‖ f ‖≤1{x ∈ E :
|〈 f , x〉| ≤ 1} satisfies

‖x‖ = sup
‖ f ‖≤1

|〈 f , x〉| ≤ 1,

and this proves that actually

B1(0) =
⋂

f∈E∗ , ‖ f ‖≤1

{x ∈ E : |〈 f , x〉| ≤ 1}.

Since the r.h.s. is the intersection of closed sets in the weak topology σ(E, E′),
this implies that B1(0) is weakly closed.

4.60 example. The open unit ball

U = {x ∈ E : ‖x‖ < 1},

with E infinite dimensional, is never open in the weak topology σ(E, E′). Sup-
pose by contradiction that U is weakly open. Then its complement Uc = {x ∈
E : ‖x‖ ≥ 1} is weakly closed. It follows that B1(0)∩Uc = S is weakly closed,
which contradicts the example 4.59.

One can prove that the weak topology is never metrizable in infinite di-
mensions, i. e. there is no metric on E that induces the weak topology σ(E, E′).
The proof is postponed.

Keep in mind that, in general, if two topological spaces have the same con-
vergent sequences this does not automatically imply that they have the same
topologies. Indeed, if two metric spaces have the same convergent sequences
then they have the identical topologies. But in general, the set of convergent
sequences is not enough to characterise a topology if this is not induced by a
distance. This discussion implies in particular that, in principle, there might
be examples of infinite dimensional spaces E for which every weakly converg-
ing sequence also converges strongly, whereas of course the two topologies
(strong and weak) are distinct. Such examples are quite rare and pathological.

We now turn our attention to the dual space E′. As we know, E′ is a normed
space with the operator norm

‖ f ‖E′ = sup
‖x‖≤1

| f (x)|.

Hence, one could consider the dual space of E′, i. e. the space of all continuous
linear functionals defined on E′, given by the bidual E′′. As dual of the space
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E∗, the space E′′ is naturally equipped with the norm

‖ξ‖E′′ = sup
f∈E′ , ‖ f ‖E′≤1

|〈ξ, f 〉|, ξ ∈ E′′.

Recall the canonical injection J : E → E′′ defined as follows. Given x ∈ E, the
map E′ 3 f 7→ 〈 f , x〉 is a continuous linear functional on E′. This is due to the
inequality

|〈 f , x〉| ≤ ‖x‖E‖ f ‖E′ .

Thus, such map is an element of E′′. We denote such element as J(x). By
definition, we have

〈J(x), f 〉E′′ ,E′ = 〈 f , x〉E′ ,E, for all f ∈ E′.

It is clear that J is linear and that J is an isometry, that is, ‖J(x)‖E′′ = ‖x‖E.
Indeed, we have

‖J(x)‖E′′ = sup
‖ f ‖E′≤1

|〈J(x), f 〉| = sup
‖ f ‖E′≤1

|〈 f , x〉| = ‖x‖E,

and the last step is due to Corollary 4.38.
So far, we have two topologies on E′:

(a) the usual strong topology associated to ‖ · ‖′ ,

(b) the weak topology σ(E′, E′′).

We are now going to define a third topology on E′, called weak∗ topology
and denoted by σ(E′, E). For every x ∈ E consider the linear functional ϕx :
E′ → R defined by E′ 3 f 7→ ϕx( f ) = 〈 f , x〉. As x runs through E we obtain a
collection {ϕx}x∈E of maps from E′ into R.

4.61 definition. The weak∗ topology σ(E′, E) on E′ is the inverse limit topology
of the family of maps {ϕx}x∈E.

Notice that ϕx is just another notation for J(x) above. Hence, for all x ∈ E,
the linear functional ϕx : E′ → R is continuous (as a function from the normed
space (E∗, ‖ · ‖E′) to R), and therefore ϕx ∈ E′′. This fact implies that the weak∗

topology σ(E′, E) on E′ is coarser than the weak topology σ(E′, E′′) on E′, i. e.
σ(E′, E) has fewer open sets (resp. closed sets) than σ(E′, E′′), which in turn
has fewer open sets than the strong topology induced on E′ by the operator
norm ‖ · ‖E′ .

One may probably wonder why there is such an interest into defining
weaker and weaker topologies. The reason is the following: a coarser topology
has more compact sets, since there are less open covers to test the compactness
condition.

We now state some general properties of the weak* topology without
proofs.
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4.62 proposition. Let f0 ∈ E′. Given a finite set {x1, . . . , xk} ⊂ E and ε > 0,
consider

V = V(x1, . . . , xk; ε) = { f ∈ E′ : |〈 f − f0, xi〉| < ε, for all i = 1, . . . , k}.

Then V is a neighborhood of f0 for the topology σ(E′, E). Moreover, we obtain a basis
of neighborhoods of f0 for σ(E′, E) by varying ε, k, and the xi’s in E.

Let { fn}n be a sequence on E′. If fn converges to f ∈ E′ in the σ(E′, E)
topology we shall use the notation

fn
∗−⇀ f .

We shall sometimes say fn
∗−⇀ f weakly∗ in σ(E′, E). The convergence of fn

to f in the weak topology σ(E′, E′′) will be denoted by fn ⇀ f in σ(E′, E′′).
The convergence of fn to f in the strong topology of E′ will be sometimes
emphasised by saying fn → f strongly, meaning ‖ fn − f ‖E′ → 0.

By mimicking the proof of Proposition 4.57, one can prove (we won’t) the
following statements for a general sequence fn ∈ E′:

(i) fn
∗−⇀ f in σ(E′, E) if and only if 〈 fn, x〉 → 〈 f , x〉 for all x ∈ E.

(ii) If fn → f strongly, then fn ⇀ f in σ(E′, E′′). If fn ⇀ f in σ(E′, E′′), then
fn
∗−⇀ f in σ(E′, E).

(iii) If fn
∗−⇀ f in σ(E′, E) then {‖ fn‖}n is bounded and ‖ f ‖ ≤ lim infn→+∞ ‖ fn‖.

(iv) If fn
∗−⇀ f in σ(E′, E) and if xn → x strongly in E, then 〈 fn, xn〉 → 〈 f , x〉.

When dim(E) < +∞ the three topologies (strong, weak, weak∗) on E′

coincide. Indeed, the canonical injection J : E → E′′ is in this case surjective
(since dim(E) = dim(E′′) and therefore σ(E′, E) = σ(E′, E′′).

We are now ready to state one of the main results of this part. As we
observed above, weakening a topology implies having more compact sets.
As seen in Theorem 4.29, one of the main points with the strong topology
on a normed space of infinite dimension is that the closed unit ball is not
a compact set. Such a situation changes drastically when passing from the
strong topology to weak topologies. The next result is a first big step toward
this direction.

4.63 theorem (Banach - Alaoglu - Bourbaki). The closed unit ball

BE′ = { f ∈ E′ : ‖ f ‖E′ ≤ 1}

is compact in the weak∗ topology σ(E′, E).

The next result describes a basic property of reflexive spaces.
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4.64 theorem (Kakutani). Let E be a Banach space. Then E is reflexive if and only
if

BE = {x ∈ E : ‖x‖ ≤ 1}

is compact in the weak topology σ(E, E′).

Other relevant properties are stated below.

4.65 proposition. Assume that E is a reflexive Banach space and let M ⊂ E be a
closed linear subspace of E. Then M is reflexive.

4.66 proposition. A Banach space E is reflexive if and only if its dual space E′ is
reflexive.

An important role is played, at this stage, by separability.

4.67 theorem. Let E be a Banach space such that E′ is separable. Then, E is separa-
ble.

4.68 corollary. Let E be a Banach space. Then, E is reflexive and separable if and
only if E′ is reflexive and separable.

We conclude with a result which is probably the most important one of
this section.

4.69 theorem (Weak compactness on reflexive spaces). Assume that E is a re-
flexive Banach space and let {xn}n be a bounded sequence in E. Then there exists a
subsequence xnk that converges in the weak topology σ(E, E′).

4.7 Weak convergences in `p and Lp spaces

4.70 example. Let p ∈ (1,+∞) and X = `p(N). By definition, a sequence
(xn) ∈ X converges weakly to x if ϕ(xn) → ϕ(x) as n → +∞ for all ϕ ∈
(`p(N))′. Example 4.31 shows that this is equivalent to requiring

+∞

∑
k=1

xn,kyk →
+∞

∑
k=1

xkyk as n→ +∞

for all y = (yk) ∈ `q(N) with 1/p + 1/q = 1. We show with the following
example that weak convergence in general does not imply strong convergence.
Consider the sequence (xn) in `p(N) defined by xn = (xn,k)k with xn,k = δn,k,
δn,k being the usual Kronecker delta. We show that xn converges weakly to
zero in `p(N). To see that, let y = (yk) be an element of `q(N) with 1/q +
1/p = 1. Compute

+∞

∑
k=1

xn,kyk =
+∞

∑
k=1

δn,kyk = yn.
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Since y ∈ `q(N), the series ∑+∞
k=1 |yn|q converges, which implies that yn → 0 as

n→ +∞, and the assertion is proven. However, xn does not converge strongly
to zero. Indeed,

‖xn − 0‖p
`p =

+∞

∑
k=1
|xn,k|p = 1 9 0.

Such an argument clearly does not work if p = 1. In this case, the dual
space is identified with `∞(N), and therefore it is no longer true that yn → 0
as n → +∞. In fact one can prove that `1(N) has the so-called Schur property,
namely that every weakly convergent sequence is also strongly convergent,
we omit the details.

Let us now consider the case p = +∞. In this case, we cannot easily iden-
tify the dual space of X = `∞(N), hence the weak convergence is difficult to
state. But since X is the dual of `1(N), we can easily define weak-∗ conver-
gence as follows: a sequence (xn) ∈ `∞(N) converges weakly-∗ to x if and
only if

+∞

∑
k=1

xn,kyk →
+∞

∑
k=1

xkyk as n→ +∞

for all y = (yk) ∈ `1(N). The above example xn,k = δn,k works also in this case
to show that xn converges to zero in the weak-∗ sense but not strongly.

Let us now turn to weak convergence in Lp spaces. According to Theo-
rem 4.32, weak convergence can be characterized in terms of convergence of
multiplications under integrals. This permits us to reformulate the notion of
weak convergence in Lp spaces as follows. Here we shall always think of Lp

as Lp(Ω) for some measurable set Ω ⊂ Rd.

4.71 definition. Suppose that 1 ≤ p < +∞. A sequence ( fn) converges weakly
to f in Lp, written fn ⇀ f , if

lim
n→+∞

∫
fngdx =

∫
f gdx for every g ∈ Lq,

where q is the Hölder conjugate of p, 1/p + 1/q = 1. When p = +∞ and
q = 1, the condition above corresponds to weak-∗ convergence of fn to f in
L∞.

As in the case of `p spaces, weak Lp convergence does not imply strong
Lp-convergence, i.e. convergence in the Lp norm. The following example illus-
trates three typical ways in which a weakly convergent sequence of functions
can fail to be strongly convergent.

4.72 example. Let g ∈ Lp(R) be a fixed nonzero function, where 1 < p < +∞.
For each of the following three sequences, we have fn ⇀ 0 weakly as n→ +∞
but not fn → 0 strongly, in Lp(R).

(a) fn(x) = g(x) sin nx (oscillation). Consider the case g = 1[0,π]. For every
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polynomial p we have

∫
R

fn pdx =

π∫
0

sin nxp(x)dx =
1
n

p(0)− p(π) cos nπ +

π∫
0

p′(x) cos nxdx

 ,

hence
∫

R
fn pdx → 0 as n → +∞. We know that polynomial are dense

in C([0, π]). Therefore, for a general f ∈ Lq(R) with 1/q + 1/p = 1,
and an arbitrary ε > 0, let p be a polynomial on [0, π] such that ‖ f −
p‖L∞([0,π]) < ε. Consider∣∣∣∣∣∣

∫
R

fn f dx

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫
R

fn pdx

∣∣∣∣∣∣+
∣∣∣∣∣∣

π∫
0

fn( f − p)dx

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫
R

fn pdx

∣∣∣∣∣∣+ ‖ fn‖L1([0,π])‖ f − p‖L∞([0,π]).

Now, the last term above can be controlled by

‖ fn‖L1([0,π])‖ f − p‖L∞([0,π]) ≤ ε

π∫
0

| sin nx|dx ≤ ε,

and then we can send n→ +∞ and get

lim
n→+∞

∣∣∣∣∣∣
∫
R

fn f dx

∣∣∣∣∣∣ ≤ ε,

in view of the previous case of polynomials. Since ε is arbitrary, we
have proven that fn ⇀ 0 weakly in Lp. On the other hand, fn does
not converge strongly to zero in Lp, since

∫ π
0 | sin(nx)|pdx can be easily

proven not to converge to zero as n→ +∞ (exercise).

• fn(x) = n1/pg(nx) (concentration). Once again, for simplicity let us con-
sider the case g = 1[0,π]. For all f ∈ Lq(R) with q conjugate exponent of
p, Hölder’s inequality implies∣∣∣∣∣∣

∫
R

fn(x) f (x)dx

∣∣∣∣∣∣ = n1/p
1/n∫
0

| f (x)|dx

≤ n1/p

 1/n∫
0

dx

1/p 1/n∫
0

| f (x)|qdx

1/q

= n1/p 1
n1/p

 1/n∫
0

| f (x)|qdx

1/q

=

 1/n∫
0

| f (x)|qdx

1/q

.
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Now, the sequence of functions hn = | f |q1[0,1/n] satisfy 0 ≤ hn ≤ | f |q,
and the latter is a summable function. Therefore, Lebesgue’s dominated

convergence theorem easily implies
(∫ 1/n

0 | f (x)|qdx
)1/q

→ 0 as n →
+∞. This shows that fn ⇀ 0 weakly in Lp(R). On the other hand,

‖ fn‖p
Lp(R)

=

1/n∫
0

|n1/p|pdx = 1 for all n→ +∞,

which implies fn does not converge to zero in Lp.

(c) fn(x) = g(x − n) (escape to infinity). Using the example g(x) = 1[0,1],
it is immediately seen that fn does not converge to zero in Lp. On the
other hand, for all f ∈ Lq(R),

∣∣∣∣∫ fn f dx
∣∣∣∣ =

∣∣∣∣∣∣
n+1∫
n

f dx

∣∣∣∣∣∣ ≤
 n+1∫

n

| f (x)|qdx

1/q

,

and the last term converges to zero similarly to case (b) above.

4.8 Exercises

1. Let fn : R→ R defined by

fn(x) =


x− 1

2n x ≥ 1/n
nx2

2 −1/n ≤ x ≤ 1/n
−x− 1

2n x ≤ −1/n.

Prove that fn is continuously differentiable for all n ∈ N. Find (if it
exists) f the uniform limit as n→ +∞ of fn on R. Is f differentiable?

2. Is the space C([0, 1]) complete with respect to the Lp norm for p ∈
[1,+∞)? Justify your answer.

3. Prove that the set

{ f ∈ C([0, 1]) : f (0) = 0}

is a closed linear subspace of C([0, 1]).

4. Consider the operator K : C([0, 1])→ C([0, 1]) defined by

K f (x) =
1∫

0

sin(π(x− y)) f (y)dy.

(a) Prove that K is a bounded linear operator.

(b) Find the range of K.
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5. Let f (x) = |x| be defined on x ∈ [−1, 1].

• Prove that the function f is an element of the Sobolev space W1,p

for all p ∈ [1,+∞] (Hint: show that the W1,p norms of f are finite
for all p).

• For n ∈N consider the sequence

fn(x) =


−x− 1

2n if −1 ≤ x < −1/n
n x2

2 if −1/n ≤ x ≤ 1/n
x− 1

2n if 1/n < x ≤ 1.

Show that fn → f as n → +∞ in W1,p for all p ∈ [1,+∞) but not
for p = +∞.

6. Consider the operator T : L1([0, 1])→ C([0, 1])

(T f )(x) =
x∫

0

t f (t)dt.

• Prove that T is a linear operator.

• Prove that T is a bounded operator.

7. Suppose that k : [0, 1]× [0, 1] → R is a continuous function. Prove that
the integral operator K : C([0, 1])→ C([0, 1]) defined by

K f (x) =
1∫

0

k(x, y) f (y)dy

is compact.

8. Let T : `2(N)→ `2(N) defined by

(Tx)n = arctan(n)xn n ∈N.

Show that T is a bounded linear operator and compute the operator
norm ‖T‖.

9. Let T : `∞(N)→ `∞(N) defined by

(Tx)n =
n2

1 + n2 (xn + xn+1) n ∈N.

Show that T is a bounded linear operator and compute the operator
norm ‖T‖.

10. Let g : Rd → [0,+∞) be a measurable nonnegative function, and let
p ∈ (1,+∞). Consider the operator

f 7→ T f (x) = g(x) f (x).
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Find a condition on g such that the above operator T is a linear and
bounded operator from Lp(Rd) to Lp(Rd).

11. Consider the operator A : C1((0, 1))→ C((0, 1)) defined by

(A f )(x) =
d

dx
f (x).

Show that A is linear but not bounded.

12. Let `c(N) be the space of all real-valued sequences of the form x =
(x1, x2, . . . , xn, 0, 0, . . .), whose terms vanish from some point onwards.

(a) Prove that `c(N) is an infinite dimensional linear subspace of `p(N)
for all p ∈ [1,+∞].

(b) Prove that `c(N) is not closed in `p(N) for all p ∈ [1,+∞].

(c) Prove that `c(N) is dense in `p(N) for all p ∈ [1,+∞).

(d) Prove that the closure of `c(N) in `∞(N) is the space of all se-
quences that converge to zero.

13. Let T : L2([0, π])→ L2([0, π]) be defined as

(T f )(x) =
π∫

0

cos(x + 2y) f (y)dy.

Find the kernel and the range of T.

14. Let T : L1(R)→ R be defined as

T( f ) =
∫
R

sin x f (x)dx.

Show that T is a linear and continuous functional on L1 and compute its
norm.

15. Let x0 ∈ [0, 1]. Let T : C([0, 1])→ R be defined as

T( f ) = f (x0).

Prove that T is a linear and bounded functional and compute its norm.

16. Let (xn) be the sequence in `2 defined by

xn,k =

{
1 if n = k
0 otherwise.

Prove that xn converges to zero weakly in `2. Is (xn) converging to zero
strongly?
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17. fn : R→ R be defined as

fn(x) =
√

n1[0,1/n].

Prove that fn converges weakly to zero in L2(R).

18. Let fn : R→ R be defined by fn(x) = n1[0,1/n](x).

(a) Prove that fn is uniformly bounded in L1(R).

(b) Is it possible to extract a subsequence of fn which converges weakly
in L1?

4.9 Envisaged outcomes

At the end of this chapter, the student should

• Have a clear picture of the main examples of finite and infinite dimen-
sional Banach spaces arising from finite dimensional geometry, spaces
of sequences, and function spaces.

• Be familiar with the concept of bounded linear operator and with the
notion of operator norm. In the exercises, given a linear operator (or a
linear functional), the student should be able to determine whether or
not the operator is linear and bounded.

• Be able to determine the range and the kernel of a linear operator.

• Be familiar with the concept of closed range operator.

• Be able to prove that all norms are equivalent in a finite dimensional
normed space.

• Be familiar with the concepts of uniform convergence and strong con-
vergence for sequences of bounded linear operators.

• Be familiar with the notion of compact operator.

• Be familiar with the notion of dual space, being able to determine dual
spaces of the main Banach spaces considered in the course.

• Be familiar with the notion of weak convergence on a Banach space,
in particular on Lp and `p spaces. Especially in Lp, the student should
be familiar with the three most important phenomena in which weak
convergence occurs and strong convergence does not. Given a sequence
in a Banach space, the student should be able to determine whether or
not the sequence converges weakly on that space. The student should
know the main results on weak compactness on infinite dimensional
spaces.
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Hilbert spaces are Banach spaces with a norm that is derived from an inner
product, so they have an extra feature in comparison with arbitrary Banach
spaces, which makes them still more special. We can use the inner product
to introduce the notion of orthogonality in a Hilbert space, and the geometry
of Hilbert spaces is in almost complete agreement with our intuition of linear
spaces with an arbitrary (finite or infinite) number of orthogonal coordinate
axes. By contrast, the geometry of infinite-dimensional Banach spaces can be
surprisingly complicated and quite different from what naive extrapolations
of the finite-dimensional situation would suggest.

5.1 Inner products

To be specific, we consider complex linear spaces throughout this section.
We use a bar to denote the complex conjugate of a complex number. The
corresponding results for real linear spaces are obtained by replacing C by R

and omitting the complex conjugates.

5.1 definition. An inner product on a complex linear space X is a map

(·, ·) : X× X → C

such that, for all x, y, z ∈ X and λ, µ ∈ C:

(a) (x, λy + µz) = λ(x, y) + µ(x, z) (linear in the second argument);

(b) (y, x) = (x, y) (Hermitian symmetric);

(c) (x, x) ≥ 0 (nonnegative);

(d) (x, x) = 0 if and only if x = 0 (positive definite).

We call a linear space with an inner product an inner product space or a pre-
Hilbert space.

From (a) and (b) it follows that (·, ·) is antilinear, or conjugate linear, in the
first argument, meaning that

(λx + µy, z) = λ(x, z) + µ(y, z).

If X is real, then (·, ·) is bilinear, meaning that it is a linear function of each
argument. If X is complex, then (·, ·) is said to be sesquilinear.

There are two conventions for the linearity of the inner product. In most of
the mathematically oriented literature (·, ·) is linear in the first component. We
adopt the convention that the inner product is linear in the second component,
which is more common in applied mathematics and physics.

If X is a linear space with an inner product (·, ·), then we can define a
norm on X by

‖x‖ =
√
(x, x).
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To see that the above ‖ · ‖ is actually a norm, due to the properties (a)-(d)
above we only need to prove the triangle inequality. Such a property follows
form the following one.

5.2 theorem (Cauchy-Schwarz inequality). Let X be an inner product space, and
let x, y ∈ X. Then

|(x, y)| ≤ ‖x‖‖y‖. (48)

Proof. By the nonnegativity of the inner product we have

0 ≤ (λx− µy, λx− µy)

for all x, y ∈ X and λ, µ ∈ C. Expansion of the inner product implies

λµ(x, y) + λµ(y, x) ≤ |λ|2‖x‖2 + |µ|2‖y‖2.

If (x, y) = reiϕ, where r = |(x, y)| and ϕ = Arg(x, y), then we choose

λ = ‖y‖eiϕ, µ = ‖x‖.

It follows that

2‖x‖‖y‖|(x, y)| ≤ 2‖x‖2‖y‖2,

which proves the result.

As a consequence of (48), given x, y ∈ X we have

‖x + y‖2 = (x + y, x + y) = ‖x‖2 + ‖y‖2 + (x, y) + (y, x)

≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ = (‖x‖+ ‖y‖)2,

and this proves the triangle inequality.

5.3 definition. A Hilbert space is a complete inner product space.

5.4 example. The standard inner product on Cn is given by

(x, y) =
n

∑
j=1

xjyj,

where x = (x1, . . . , xn) and y = (y1, . . . , yn), with xj, yj ∈ C. This space is
complete, and therefore it is a finite-dimensional Hilbert space.

5.5 example. Let C([a, b]) denote the space of all-complex-valued continuous
functions defined on the interval [a, b]. We define an inner product on C([a, b])
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by

( f , g) =
b∫

a

f (x)g(x)dx,

where f , g : [a, b] → C are continuous functions. This space is not complete,
so it is not a Hilbert space.

5.6 example. Let Ω ⊂ Rd be an open set. Given f , g ∈ L2(Ω) with complex
values, i.e. f , g : Ω→ C, we define as in the previous example

( f , g) =
∫
Ω

f (x)g(x)dx. (49)

Then, it is easily seen that

( f , f ) = ‖ f ‖2
L2(Ω),

which proves that the L2 norm is induced by the inner product (49)12. Since
L2 is a complete space, then we have just proven that L2 is a Hilbert space. L2

is the only Lp space to be a Hilbert space.

5.7 example. We define the Hilbert space `2(Z) of bi-infinite complex se-
quences by

`2(Z) =

{
(zn)

+∞
n=−∞ :

+∞

∑
n=−∞

|zn|2 < +∞

}
.

The space `2(Z) is a complex linear space, with the obvious operations of
addition and multiplication by a scalar. An inner product on it is given by

(x, y) =
+∞

∑
n=−∞

xnyn.

The space `2(N) of squared-summable sequences (zn)
+∞
n=1 is defined in an

analogous way. The fact the these spaces are complete follows by the com-
pleteness of the `p(N) spaces proven earlier in this course.

5.8 theorem (Parallelogram law). On an inner product space X we have

‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2,

for all x, y ∈ X.

12The Lp spaces defined in Section 3.4 consist of functions with real values, but the whole Lp

theory can be extended for complex valued functions
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Proof. We compute

‖x + y‖2 + ‖x− y‖2

= 2‖x‖2 + 2‖y‖2 + (x, y) + (y, x)− (x, y)− (y, x)

= 2‖x‖2 + 2‖y‖2.

5.9 exercise. Use Cauchy-Schwarz inequality to prove that the inner prod-
uct is a continuous function on an inner product space with respect to both
components.

5.2 Orthogonality

Let H be a Hilbert space. We denote its inner product by 〈·, ·〉, which is another
common notation for inner products that is often reserved for Hilbert spaces.
The inner product structure of a Hilbert space allows us to introduce the
concept of orthogonality, which makes it possible to visualize vectors and
linear subspaces of a Hilbert space in a geometric way.

5.10 definition. If x, y are vectors in a Hilbert space H, then we say that x
and y are orthogonal, written x ⊥ y, if 〈x, y〉 = 0. We say that subsets A and
B are orthogonal, written A ⊥ B, if x ⊥ y for every x ∈ A and y ∈ B. The
orthogonal complement A⊥ of a subset A is the set of vectors orthogonal to A,

A⊥ = {x ∈ H : x ⊥ y for all y ∈ A}.

5.11 theorem. The orthogonal complement of a subset of a Hilbert space is a closed
linear subspace.

Proof. Let H be a Hilbert space and A a subset of H. If x, y ∈ A⊥ and λ, µ ∈ C,
then the linearity of the inner product implies that

〈x, λy + µz〉 = λ〈x + y〉+ µ〈x, z〉 = 0

for all x ∈ A. Therefore, λy + µz ∈ A⊥, so A⊥ is a linear subspace.
To show that A⊥ is closed, we show that if (yn) is a convergent sequence

in A⊥, then the limit y also belongs to A⊥. Let x ∈ A. From the continuity of
the inner product we have

〈x, y〉 = 〈x, lim
n→+∞

yn〉 = lim
n→+∞

〈x, yn〉 = 0,

since 〈x, yn〉 = 0 for every x ∈ A and yn ∈ A⊥. Hence, y ∈ A⊥.

The following theorem expresses one of the fundamental geometrical prop-
erties of Hilbert spaces. While the result may appear obvious, the proof is not
trivial.
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5.12 theorem (Orthogonal Projection). Let M be a closed linear subspace of a
Hilbert space H.

(a) For each x ∈ H there is a unique closest point y ∈ M such that

‖x− y‖ = min
z∈M
‖x− z‖.

(b) The point y ∈ M closest to x ∈ H is the unique element of M with the property
that (x− y) ⊥ M.

Proof. Let d be the distance of x from M,

d = inf{‖x− y‖ : y ∈ M}.

First, we prove that there is a closest point y ∈ M at which this infimum
is attained, meaning that ‖x − y‖ = d. From the definition of d, there is a
sequence of elements yn ∈ M such that

lim
n→+∞

‖x− yn‖ = d.

Thus, for all ε > 0, there is an N such that

‖x− yn‖ ≤ d + ε when n ≥ N.

We show that the sequence (yn) is Cauchy. From the parallelogram law, we
have

‖ym − yn‖2 + ‖2− ym − yn‖2 = 2‖x− ym‖2 + 2‖x− yn‖2.

Since (yn + ym)/2 ∈ M, the definition of d implies

‖x− (ym + yn)/2‖ ≥ d.

Hence, for all m, n ≥ N, we get

‖ym − yn‖2 = 2‖x− ym‖2 + 2‖x− yn‖2 − ‖2− ym − yn‖2

≤ 4(d + ε)2 − 4d2 = 4ε(2d + ε).

Therefore, (yn) is Cauchy. Since a Hilbert space is complete, there is a y such
that yn → y, and since M is closed, we have y ∈ M. The norm is continuous,
so ‖x− y‖ = limn→+∞ ‖x− yn‖ = d.

Second, we prove the uniqueness of a vector y ∈ M that minimizes ‖x− y‖.
Suppose y and y′ both minimize the distance to x, meaning that

‖x− y‖ = ‖x− y′‖ = d.

Then the parallelogram law implies that

2‖x− y‖2 + 2‖x− y′‖2 = ‖2x− y− y′‖2 + ‖y− y′‖2.
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Hence, since (y + y′)/2 ∈ M,

‖y− y′‖2 = 4d2 − 4‖x− (y + y′)/2‖2 ≤ 0,

therefore ‖y− y′‖ = 0 so that y = y′.
Third, we show that the unique y ∈ M found above satisfies the condition

that the ‘error’ vector x− y is orthogonal to M. Since y minimizes the distance
to x, we have for every λ ∈ C and z ∈ M that

‖x− y‖2 ≤ ‖x− y− λz‖2.

Expanding the right-hand side of this equation, we obtain that

2Reλ〈x− y, z〉 ≤ |λ|2‖z‖2.

Suppose that 〈x − y, z〉 = |〈x − y, z〉|eiϕ. Choosing λ = εe−iϕ, where ε > 0,
and dividing by ε, we get

2|〈x− y, z〉| ≤ ε‖z‖2.

Taking the limit as ε→ 0+, we find that 〈x− y, z〉 = 0, so (x− y) ⊥ M.
Finally, we show that y is the only element in M such that x − y ⊥ M.

Suppose that y′ is another such element in M. Then y− y′ ∈ M, and, for any
z ∈ M we have

〈z, y− y′〉 = 〈z, x− y′〉 − 〈z, x− y〉 = 0.

In particular, we may take z = y− y′, and therefore we must have y = y′.

The point y ∈ M above is called the Orthogonal Projection of x onto M.
The proof of part (a) applies if M is any closed convex subset of H (exer-

cise). Theorem 5.12 can also be stated in terms of decomposition of H into an
orthogonal direct sum of closed subspaces.

5.13 definition. If M and N are orthogonal closed linear subspaces of a
Hilbert space H, then we define the orthogonal direct sum, or simply direct sum,
M⊕ N of M and N by

M⊕ N = {y + z : y ∈ M and z ∈ N}.

Theorem 5.12 states that if M is a closed subspace, then any x ∈ H may be
uniquely represented as x = y + z, where y ∈ M is the best approximation to
x and z ⊥ M. We therefore have the following corollary.

5.14 corollary. If M is a closed linear subspace of a Hilbert space H, then H =
M⊕M⊥.

Thus, every closed linear subspace M of a Hilbert space has a closed com-
plementary subspace M⊥. If M is not closed, then we may still decompose H
as H = M ⊕ M⊥. In a general Banach space, there may be no element of a
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closed subspace that is closest to a given element of the Banach space.

5.3 Orthonormal bases

A subset U of nonzero vectors in a Hilbert space H is orthogonal if any two
distinct elements in U are orthogonal. A set of vectors U is orthonormal if it is
orthogonal and ‖u‖ = 1 for all u ∈ U, in which case the vectors u are said
to be normalized. An orthonormal basis of a Hilbert space is an orthonormal set
such that every vector in the space can be expanded in terms of the basis, in a
way that we make precise below.

In this section we show that every Hilbert space has an orthonormal ba-
sis, which may be finite, countably finite, of uncountable. Two Hilbert spaces
whose orthonormal bases have the same cardinality are isomorphic, but many
different concrete realizations of a given abstract Hilbert space arise in appli-
cations. The most important case in practice is that of a separable Hilbert space,
which has a finite of countably infinite orthonormal basis. As shown below,
this condition is equivalent to the separability of the Hilbert space as a metric
space, meaning that it contains a countable dense subset.

5.15 example. A set of vectors {e1, . . . , en} is an orthonormal basis of the
finite-dimensional Hilbert space Cn if:

(a) 〈ej, ek〉 = δjk for 1 ≤ j, k ≤ n;

(b) for all x ∈ Cn there are unique coordinates xk ∈ C such that

x =
n

∑
k=1

xkek,

where δjk is the Kronecker delta symbol

δjk =

{
1 if j = k
0 if j 6= k.

The orthonormality of the basis implies that xk = 〈ek, x〉. For example, the
standard orthonormal basis of Cn consists of the vectors

e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, . . . , 1).

5.16 example. Consider the Hilbert space `2(Z) defined in example 5.7. An
orthonormal basis of `2(Z) is the set of coordinate basis vectors {en : n ∈ Z}
given by

en = (δkn)
+∞
k=−∞.

5.17 example. The set of functions {en : n ∈ Z}, given by

en(x) =
1√
2π

einx,
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is an orthonormal basis of the space L2(T) of 2π-periodic functions, called
the Fourier basis. We will study it in detail below. As we will see, the map
F−1 : `2(Z)→ L2(T) defined by

F−1((ck)k) =
1√
2π

+∞

∑
k=−∞

ckeikx

is a Hilbert space isomorphism between `2(Z) and L2(T). Such a map is called
inverse Fourier transform. Both Hilbert spaces are separable with a countably
infinite basis.

5.18 theorem (Bessel’s inequality). Let U = {un : n ∈ N} be an orthonormal
sequence in a Hilbert space H and x ∈ H. Then,

(a) ∑n∈N |〈un, x〉|2 ≤ ‖x‖2;

(b) xU
.
= ∑+∞

n=1〈un, x〉un is a convergent sum;

(c) x− xU ∈ U⊥.

Proof. We begin by computing ‖x−∑N
n=1〈un, x〉un‖ for any N ∈N:∥∥∥∥∥x−

N

∑
n=1
〈un, x〉un

∥∥∥∥∥
2

=

〈(
x−

N

∑
n=1
〈un, x〉un

)
,

(
x−

N

∑
m=1
〈um, x〉um

)〉

= 〈x, x〉 −
N

∑
m=1
〈um, x〉〈x, um〉 −

N

∑
n=1
〈un, x〉〈un, x〉+

N

∑
n,m=1

〈un, x〉〈um, x〉〈un, um〉

= ‖x‖2 −
N

∑
n=1
|〈un, x〉|2.

Hence,

N

∑
n=1
|〈un, x〉|2 = ‖x‖2 −

∥∥∥∥∥x−
N

∑
n=1
〈un, x〉un

∥∥∥∥∥
2

≤ ‖x‖2.

Since ∑N
n=1 |〈un, x〉|2 is a sum of nonnegative numbers that is bounded from

above by ‖x‖2, it is the partial sum of a convergent series. Therefore the sum
converges and satisfies (a). The convergence claimed in (b) follows by the fact
that, for given N, M ∈N, one has∥∥∥∥∥ N

∑
n=M+1

un

∥∥∥∥∥
2

=
N

∑
n,m=M+1

〈un, um〉 =
N

∑
n=M+1

‖un‖2.

Now, since the right hand side goes to zero as N, M → +∞ because of (a),
then the left hand side is infinitesimal for large N, M. In order to prove (c),
we consider any uk0 ∈ U. Using the orthonormality of U and the continuity
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of the inner product, we find that〈
x−

+∞

∑
n=1
〈un, x〉un, uk0

〉

= 〈x, uk0〉 −
+∞

∑
n=1
〈un, x〉〈un, uk0〉 = 〈x, uk0〉 − 〈x, uk0〉 = 0.

Hence, x−∑+∞
n=1〈un, x〉un ∈ U⊥.

Given a subset U ⊂ H, we define the closed linear span [U] of U by

[U] =

{
∑

u∈U
cuu : cu ∈ C and ∑u∈U cuu converges

}
.

Equivalently, [U] is the smallest closed linear subspace that contains U. We
leave the proof of the following lemma to the student.

5.19 lemma. If U = {un : n ∈ N} is an orthonormal set in a Hilbert space H,
then

[U] =

{
+∞

∑
n=1

cnun : cn ∈ C and ∑+∞
n=1 |cn|2 < +∞

}
.

By combining Theorem 5.12 and Theorem 5.18 we see that xU , defined in
part (c) of Theorem 5.18, is the unique element of [U] satisfying

‖x− xU‖ = min
u∈[U]

‖x− u‖.

In particular, if [U] = H, then xU = x, and every x ∈ H may be expanded
in terms of elements of U. The following theorem gives equivalent conditions
for this property of U, called completeness.

5.20 theorem. If U = {un : n ∈ N} is an orthonormal sequence of a Hilbert
space H, then the following conditions are equivalent:

(a) 〈un, x〉 = 0 for all n ∈N implies x = 0;

(b) x = ∑n∈N〈un, x〉un for all x ∈ H;

(c) ‖x‖2 = ∑n∈N |〈un, x〉|2 for all x ∈ H;

(d) [U] = H;

(e) U is a maximal orthonormal sequence.

Proof. The condition (a) states that U⊥ = {0}. Part (c) of Theorem 5.18 the
implies (b). The fact that (b) implies (c) follows from the same computation
used to prove (b) in Theorem 5.18. To prove that (c) implies (d), we observe
that (c) implies that U⊥ = {0}, which implies that [U]⊥ = {0}, so [U] = H.
Condition (e) means that if V is a subset of H that contains U and is strictly
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larger than U, than V is not orthonormal. To prove that (d) implies (e), we note
from (d) that any v ∈ H is of the form v = ∑n∈N cnun, where cn = 〈un, x〉.
Therefore, if v ⊥ U then cn = 0 for all n ∈ N, and hence v = 0, so U ∪ {v} is
not orthonormal. Finally, (e) implies (a), since (a) is just a reformulation of (e).
This proves the theorem (all the statements are equivalent).

In view of this theorem, we may now introduce the following definition.

5.21 definition. An orthonormal set U = {xn : n ∈ N} of a Hilbert space
H is complete if it satisfies any of the equivalent conditions (a)-(e) in Theorem
5.20. A complete orthonormal subset of H is also called an orthonormal basis of
H.

Condition (a) is often the easiest to verify. Condition (b) is the property
that is used most often. Condition (c) is a special case of the so-called Parseval’s
identity (see below). Condition (d) simply expresses completeness of the basis,
and condition (e) expresses the factg that an orthonormal bases cannot be
extended by adding one more vector in a way to still get an independent set
of vectors.

The following identity shows that a Hilbert space H with orthonormal
basis {un : n ∈ N} is isomorphic to the sequence space `2(Z). The proof is
left to the student.

5.22 theorem (Parseval’s identity). Suppose that U = {un : n ∈ N} is an
orthonormal basis of a Hilbert space H. If x = ∑n∈N anun and y = ∑n∈N bnun,
where an = 〈un, x〉 and b = 〈un, y〉, then

〈x, y〉 = ∑
n∈N

anbn.

Orthonormal basis play an essential role in Hilbert spaces. It can be proven
(but we shall omit the proof) that an arbitrary Hilbert space can be equipped
with an orthonormal basis. In general, this basis may be countable or more
than countable. One can prove that a separable Hilbert space always has a
countable orthonormal basis. The procedure used to prove that is the so-called
Gram-Schmidt orthonormalization procedure, i.e. an algorithm for the construc-
tion of an orthonormal basis from any countable linearly independent set
whose linear span is dense in H. We omit the details and state this impor-
tant assertion as a Theorem. In fact, the existence of an orthonormal basis is
equivalent to the separability of the Hilbert space.

5.23 theorem. A Hilbert space is separable if and only if it has a countable orthonor-
mal basis.

What makes Hilbert spaces so powerful in many applications is the possi-
bility of expressing a problem in terms of a suitable orthonormal basis. Here
we consider Fourier series, which corresponds to the expansion of periodic
functions with respect to an orthonormal basis of trigonometric functions.

146



5.3. Orthonormal bases

A function f : R→ C is 2π-periodic if

f (x + 2π) = f (x) for all x ∈ R.

The choice of the 2π for the period is simply for convenience; different periods
may be reduced to this case by rescaling the independent variable. A 2π-
periodic function on R may be identified with a function on the circle, or one-
dimensional torus T = R/(2πZ), which we identify by identifying points in
R that differ by 2πn for some n ∈ Z. We could instead represent a 2π-periodic
function f : R→ C by a function on a closed interval f : [a, a + 2π]→ C such
that f (a) = f (a + 2π), but the choice of a here is arbitrary, and it is clearer to
think of the function as defined on the circle, rather than an interval.

The space C(T) is the space of continuous functions from T to C, and
L2(T) is the closure of C(T) with respect to the L2 norm

‖ f ‖L2 =

∫
T

| f (x)|2dx

1/2

.

Here, the integral over T is an integral with respect to x taken over any interval
of length 2π. We recall that L2(T) is a Hilbert space with the inner product

〈 f , g〉 =
∫
T

f (x)g(x)dx.

The Fourier basis elements are the functions

en(x) =
1√
2π

einx.

We recall by Euler’s formula that

einx = cos(nx) + i sin(nx).

Our first objective is to prove that {en : n ∈ Z} is an orthonormal basis of
L2(T). The orthonormality of the functions en is a simple computation:

〈em, en〉 =
∫
T

1√
2π

eimx 1√
2π

einxdx

=
1

2π

2π∫
0

ei(m−n)xdx

=

{
1 if m = n,
0 if m 6= n.

Thus, the main result that we have to prove is the completeness of {en :
n ∈ N}. We denote the set of all finite linear combination of the en by P .
Functions in P are called trigonometric polynomials. We will prove that any
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continuous function on T can be approximated uniformly by trigonometric
polynomials. Since uniform convergence on T implies L2-convergence, and
continuous functions are dense in L2(T), it follows that the trigonometric
polynomials are dense in L2(T), so {en} is a basis.

5.24 theorem. The trigonometric polynomials are dense in C(T) with respect to the
uniform norm.

Proof. For each n ∈N, we define the function ϕn ≥ 0 by

ϕn(x) = cn(1 + cos x)n.

We choose the constants cn so that∫
T

ϕn(x)dx = 1.

Since 1 + cos x has a strict maximum at x = 0, the graph of ϕn is sharply
peaked at x = 0 for large n, and the area under the graph concentrates near
x = 0. In particular, ϕn satisfies

lim
n→+∞

∫
δ≤|x|≤π

ϕn(x) = 0 for every δ > 0. (50)

In order to prove (50), we observe that for all x ∈ [−π, π] with δ < |x| < π
we have

For simplicity we shall just work on the interval [0, 2π], and the result fol-
lows by periodicity. We shall use an idea suggested by Cesàro in the nineteenth
century. Let u ∈ C([0, 2π]). We consider the truncated Fourier series

Un(x) =
1

2π ∑
|k|≤n

 2π∫
0

u(t)e−iktdt

 eikx.

This is just a finite sum, so we can treat x as a parameter and use the linearity
of the integral to write this as

Un(x) =
2π∫
0

Dn(x− t)u(t)dt, Dn(s) =
1

2π ∑
|k|≤n

eiks.

Now this sum can be written as an explicit quotient, since, by telescoping

2πDn(s)(eis/2 − e−is/2) = ei(n+1/2)s − e−i(n+1/2)s.

So in fact, at least when s 6= 0,

Dn(s) =
ei(n+1/2)s − e−i(n+1/2)s

2π(eis/2 − e−is/2)
.
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A simple computation shows that in fact Dn(s) can be extended continuously
to s = 0 by setting

Dn(0) =
n + 1

2
π

.

Cesàro’s idea is to speed up the convergence of Un to u by replacing the Un’s
by their averages. We set

Vn(x) =
1

n + 1

n

∑
l=1

Ul .

Using the previous computations, we get

Vn(x) =
2π∫
0

Sn(x− t)u(t)dt, Sn(s) =
1

n + 1

n

∑
l=1

Dl(s).

Once again, we want to compute a more useful form of Vn. We compute

2(n + 1)πSn(s)(eis/2 − e−is/2) =
n

∑
l=0

ei(l+1/2)s −
n

∑
l=0

e−i(l+1/2)s.

Using the same trick again,

(eis/2 − e−is/2)
n

∑
l=0

ei(l+1/2)s = ei(n+1)s − 1,

and

(eis/2 − e−is/2)
n

∑
l=0

e−i(l+1/2)s = 1− e−i(n+1)s,

we obtain

2(n + 1)πSn(s)(eis/2 − e−is/2)2 = ei(n+1)s + e−i(n+1)s − 2,

which implies

Sn(s) =
ei(n+1)s + e−i(n+1)s − 2

2π(n + 1)(eis/2 − e−is/2)2 =
1

n + 1

sin2
(

n+1
2 s
)

2π sin2 ( s
2
) .

The function Sn is called Fejér kernel. One thing which is immediately clear
from the above discussion is that if we plug u = 1 we get Un = 1 for all n ≥ 0,
and hence Vn = 1 for all n ≥ 0. Consequently,

2π∫
0

Sn(x− t)dt = 1 for all x ∈ R. (51)
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Moreover, Sn ≥ 0 everywhere. The denominator of Sn only vanishes on the
multiples on x = 0, 2π. The limit of Sn on those points can be computed to be
(n + 1)/2π. Moreover, if we stay away from x = 0, 2π, then Sn converges to
zero uniformly. More precisely, let δ > 0 be fixed, and consider x ∈ [δ, 2− δ].
We get the estimate

max
x∈[δ,2−δ]

Sn(x) ≤ 1
2π(n + 1) sin2(δ/2)

→ 0 as n→ +∞. (52)

Now, we are interested in how close Vn gets to u as n → +∞. Due to (51), we
easily get

Vn(x)− u(x) =
2π∫
0

Sn(x− t)(u(t)− u(x))dt.

We split the above integral into two parts and use the triangle inequality to
get

|Vn(x)− u(x)| ≤
∫

{|x−t|∈[0,δ)∪(2π−δ,2π]}

Sn(x− t)|u(t)− u(x)|dt

+
∫

{|x−t|∈[δ,2π−δ]}

Sn(x− t)|u(t)− u(x)|dt.

Since u is uniformly continuous, for a given ε > 0 there is a δ > 0 such
that |u(t) − u(x)| ≤ ε/2 anytime |x − t| < δ. Consider that the the interval
[2π − δ, 2π] has to be computed carefully using the periodicity assumptions,
the details are left to the student. Hence, the first integral term above is con-
trolled by ε/2

∫ 2π
0 Sn(x, t)dt = ε/2. On the other integral term, we can use

the estimate (52) and the boundedness of u (u is continuous on a compact
interval). We then obtain

|Vn(x)− u(x)| ≤ ε/2 + 4π‖u‖∞
1

2π(n + 1) sin2(δ/2)
.

Hence, it is easy to find an Nε ∈N such that for all n ≥ Nε one gets

sup
x∈[0,2π]

|Vn(x)− u(x)| ≤ ε,

i.e. Vn converges uniformly to u. Since Dn is a linear combination of trigono-
metric functions and Sn is a linear combination of terms of the form Dn, then
Vn is a trigonometric polynomial by definition. The proof is complete.

The result in Theorem 5.24 and the density of continuous functions in L2

imply that trigonometric polynomials are dense in L2. Hence, the set U =
{en : n ∈ Z} spans the whole Hilbert space L2(T). Due to Theorem 5.20,
this implies that U is an orthonormal basis for L2(T). This means that any
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function f ∈ L2(T) can be expanded in a Fourier series as

f (x) =
1√
2π

+∞

∑
n=−∞

f̂neinx, (53)

where

f̂n = 〈en, f 〉 = 1√
2π

2π∫
0

f (x)e−inxdx.

The identity (53) means convergence of the partial sums of f in the L2-norm,
i.e.

lim
N→+∞

∫
T

∣∣∣∣∣ 1√
2π

N

∑
n=−N

f̂neinx − f (x)

∣∣∣∣∣
2

dx = 0.

Moreover, Parseval’s identity implies that

∫
T

f (x)g(x)dx =
+∞

∑
n=−∞

f̂n ĝn.

In particular, the L2-norm of an L2(T)-function can be computed either in
terms of the function or its Fourier coefficients, since

∫
T

| f (x)|2dx =
+∞

∑
n=−∞

| f̂n|2.

Thus, the periodic Fourier transform F (T) → `2(Z) that maps a function to
its sequence of Fourier coefficients, by

F f =
(

f̂n

)+∞

n=−∞
,

is a Hilbert space isomorphism between L2(T) and `2(Z). The projection the-
orem, Theorem 5.12, implies that the partial sum

FN(x) =
1√
2π

N

∑
n=−N

f̂neinx

is the best approximation of f by a trigonometric polynomial of degree N in
the sense of the L2-norm.

The L2 convergence of the Fourier series is particularly simple. It is nev-
ertheless interesting to ask about other types of convergence. For example,
the Fourier series of a function f ∈ L2(T) also converges pointwise almost
everywhere to f . This result was proven by Carleson, only as recently as 1966.
An analysis of the pointwise convergence of Fourier series is very subtle, and
the proof is beyond the scope of these notes. For smooth functions, such as
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continuously differentiable functions, the convergence of the partial sums is
uniform. We omit the details.

The behaviour of the partial sums near a point of discontinuity of a piece-
wise smooth function is interesting. The sums to not converge uniformly; in-
stead the partial sums oscillate in an interval that contains the point of discon-
tinuity. The width of the interval where the oscillation occur shrinks to zero
as N → +∞, but the size of the oscillations does not. This behaviour is called
the Gibbs phenomenon.

We conclude this section with some examples of orthogonal projections on
closed subspaces M of a Hilbert space, that is maps P : H → M provided by
the projection theorem.

5.25 example. The space L2(R) is the orthogonal direct sum of the space M of
even functions and the space N of odd functions. The orthogonal projections
P and Q of H onto M and N, respectively, are given by

P f (x) =
f (x)− f (−x)

2
, Q(x) =

f (x)− f (−x)
2

.

Note that I− P = Q.

5.26 example. Suppose that A is a measurable subset of R - for example, an
interval - with characteristic function

1A(x) =

{
1 if x ∈ A
0 if x 6∈ A.

Then

PA f (x) = 1A(x) f (x)

is an orthogonal projection of L2(R) onto the subspace of functions with sup-
port contained in A.

A frequently encountered case is that of projections onto a one-dimensional
subspace of a Hilbert space H. For any vector u ∈ H with ‖u‖ = 1, the map
Pu defined by

Pux = 〈u, x〉u

projects a vector orthogonally onto its component in the direction u.

5.27 example. If H = Rn, the orthogonal projection Pu in the direction of a
unit vector u has the rank one matrix uuT . The component of a vector x in the
direction u is Pux = (uTx)u.

5.28 example. If H = `2(Z), and u = en, where en = (δk,n)
+∞
k=−∞, and x = (xk),

then Pen x = xnen.

5.29 example. If H = L2(T) is the space of 2π-periodic functions and u =
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1/
√

2π is the constant function with norm one, then the orthogonal projection
Pu maps a function to its mean: Pu f = 〈 f 〉, where

〈 f 〉 = 1
2π

2π∫
0

f (x)dx.

The corresponding orthogonal decomposition,

f (x) = 〈 f 〉+ f̃ (x),

decomposes a function into a constant mean part 〈 f 〉 and a fluctuating part f̃
with zero mean.

5.4 The dual of a Hilbert space

A linear functional on a complex Hilbert space H is a linear map from H to C.
A linear functional ϕ is bounded, or continuous, if there exists a constant M
such that

|ϕ(x)| ≤ M‖x‖ for all x ∈ H. (54)

The norm of a bounded linear functional ϕ is

‖ϕ‖ = sup
‖x‖≤1

|ϕ(x)|. (55)

If y ∈ H, then

ϕy(x) = 〈y, x〉 (56)

is a bounded linear functional on H, with ‖ϕy‖ = ‖y‖.

5.30 example. Suppose that H = L2(T). Then, for each n ∈ Z, the functional
ϕn : L2(T)→ C,

ϕn( f ) =
1√
2π

∫
T

f (x)e−inxdx,

that maps a function to its nth Fourier coefficient is a bounded linear func-
tional. We have ‖ϕn‖ = 1 for every n ∈ Z.

One of the fundamental facts about Hilbert spaces is that all bounded
linear functionals are of the form (56).

5.31 theorem (Riesz’ representation theorem). Let H be a Hilbert space, and let
f ∈ H′ a linear and continuous functional on H. Then, there exists a unique z ∈ H
such that

〈 f , x〉 = (z, x), for all x ∈ H. (57)
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The map σ : H′ 3 f 7→ z ∈ H is a bijection of H′ onto H, it is an isometry, i.
e. ‖σ( f )‖H = ‖ f ‖H′ , and it is anti-linear, i. e. σ( f + λg) = σ( f ) + λσ(g) for all
f , g ∈ H′ and all λ ∈ C.

Proof. Let N = Ker( f ). If N = H, then f ≡ 0, and we set z = 0. If N 6= H
then there exists z0 ∈ N⊥ with z0 6= 0: indeed, for a given x0 ∈ H \ N,
take z0 = Q(x0) with Q the orthogonal projection onto N⊥. We observe that
〈 f , z0〉 6= 0 as z0 6∈ Ker( f ). Moreover, for all x ∈ H one has

x− z0

〈 f , z0〉
〈 f , x〉 ∈ N.

Indeed,

〈 f , x− z0

〈 f , z0〉
〈 f , x〉〉 = 〈 f , x〉 − 〈 f , z0〉

〈 f , z0〉
〈 f , x〉 = 0.

Therefore,

0 = (z0, x− z0

〈 f , z0〉
〈 f , x〉) = (z0, x)− 〈 f , x〉

〈 f , z0〉
(z0, z0) = (z0, x)−‖z0‖2 〈 f , x〉

〈 f , z0〉
,

which implies

〈 f , x〉 = 〈 f , z0〉
‖z0‖2 (z0, x) = (

〈 f , z0〉
‖z0‖2 z0, x).

Hence, 〈 f ,z0〉
‖z0‖2 z0 = σ( f ) is the desired element in H for which (57) holds.

Now, we claim that there is just one vector z ∈ H with the property (57).
Assume 〈 f , x〉 = (z′, x) for all x ∈ H. Then, (z− z′, x) = 0 for all x ∈ H, which
implies z = z′. Moreover, σ is a bijection, because if σ( f1) = σ( f2) then

〈 f1, x〉 = (σ( f1), x) = (σ( f2), x) = 〈 f2, x〉,

for all x ∈ H, i. e. f1 and f2 coincide. The anti-linearity is an easy exercise. Let
us prove that σ is an isometry. It suffices to prove that ‖σ( f )‖H = ‖ f ‖H∗ . Let
x ∈ H, we have (with z = σ( f ))

|〈 f , x〉| = |(z, x)| ≤ ‖x‖‖z‖,

which implies ‖ f ‖ ≤ ‖σ( f )‖. Choosing x = z we have |〈 f , z〉| = ‖z‖2, which
proves the assertion.

5.32 corollary. Every Hilbert space is reflexive.

5.5 Exercises

1. Let A be a subset of a Hilbert space H. Prove that A⊥ = A⊥.
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2. Suppose that H1 and H2 are Hilbert spaces. Define

H1 ⊕ H2 = {(x1, x2) : x1 ∈ H1 , x2 ∈ H2}

with the inner product

〈(x1, x2), (y1, y2)〉 = 〈x1, y1〉H1 + 〈x2, y2〉H2 .

Prove that H1 ⊕ H2 is a Hilbert space. Find the orthogonal complement
of the subspace {(x1, 0) : x1 ∈ H1}.

3. Let f , g ∈ H, H a Hilbert space. Assume that equality holds in Cauchy-
Schwartz inequality for f and g, i. e

( f , g) = ‖ f ‖‖g‖.

Prove that f = cg for some scalar c ∈ C. Hint: assume first that ‖ f ‖ =
‖g‖ = 1 and use Pythagoras’ theorem.

4. Let η : [a, b] → R be a continuous function such that η(t) > 0 for all
t ∈ [a, b]. For two given functions f , g : [a, b]→ C define the product

( f , g)η :=
b∫

a

f (x)g(x)η(x)dx.

Prove that (·, ·)η is a scalar product, and prove that the resulting normed
space is a Hilbert space.

5. Prove the the vectors in an orthogonal set are linearly independent.

6. Let H = L2(R), and set

M = { f ∈ H : f (t) = f (−t) almost everywhere in R}.

• Show that M is a closed subspace of H.
• Find an explicit expression for the orthogonal complement M⊥.
• Find an explicit expression for the orthogonal projection of H onto

M.

7. Consider the Hilbert space H = L2(Rd ; Rd) of all vector fields v : Rd →
Rd equipped with the scalar product

(u, v) =
∫

Rd

u(x) · v(x)dx.

Consider u(x) = ∇V(x) ∈ H for some V ∈ C1(Rd) and v ∈ H such that
divv = 0. Prove that u and v are orthogonal.

8. Let {xn : n ∈ N} be a countable orthonormal set in a Hilbert space.
Show that the sum ∑+∞

n=1
xn
n converges unconditionally but not abso-

lutely.
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9. Prove the following lemma: If U = {uα : α ∈ I} is an orthonormal set
in a Hilbert space H, then

[U] =

{
∑
α∈I

cαuα : cα ∈ C and ∑α∈I |cα|2 < +∞

}
.

10. Prove that the sets {en : n ≥ 1} defined by

en(x) =

√
2
π

sin(nx),

and { fn : n ≥ 0} defined by

f0(x) =

√
1
π

, fn(x) =

√
2
π

cos(nx), for n ≥ 1

are both orthonormal bases of L2([0, π]).

11. For each of the following functions f ∈ L2([0, π]), find the Fourier coeffi-
cients of f with respect to both the bases {en : n ≥ 1} and { fn : n ≥ 0}
of the previous exercise:

(a) f (x) = x2,

(b) f (x) = |x|,

(c) f (x) =

{
1 x ∈ [0, π/2]
2 x ∈ (π/2, π]

,

(d) f (x) = 3 sin(4x)− 7 cos(2x),

12. * Define the Legendre polynomials Pn by

Pn(x) =
1

2nn!
dn

dxn (x2 − 1)n.

• Compute the first few Legendre polynomials.

• Show that the Legendre polynomials are orthogonal in L2([−1, 1]),
and that they are obtained by Gram-Schmidt orthogonalisation of
the monomials.

• Show that

1∫
−1

Pn(x)2dx =
2

2n + 1
.

• Prove that the set

{
√

2n + 1
2

Pn, n ∈N}

is an orthonormal basis for L2([−1, 1])
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13. * Let H = L2([0, 1]). We say that f ∈ H has a weak derivative in L2 if there
exists a function g ∈ H such that

1∫
0

g(x)φ(x)dx = −
1∫

0

f (x)φ′(x)dx, for all φ ∈ C1
c ([0, 1]).

The function g is called the weak derivative of f , and is denoted by D f .
We call H1

0 ⊂ H the set of all f ∈ L2 with a weak derivative in L2.

• Prove that, if f ∈ H is a continuously differentiable function, then
the weak derivative D f coincides almost everywhere with the clas-
sical derivative f ′.

• Prove that H1
0 is a dense linear subspace of L2. Hint: use the fact

that C1 functions are dense in H.

• Equip H1
0 with the product

( f , g)H1
0

:=
1∫

0

f (x)g(x) f x +

1∫
0

D f (x)Dg(x)dx.

Prove that H1
0 is a Hilbert space with the above product.

14. Suppose (Pn) is a sequence of orthogonal projections on a Hilbert space
H such that

RanPn+1 ⊃ RanPn,
+∞⋃
n=1

RanPn = H.

Prove that (Pn) converges strongly to the identity operator as n → +∞.
Show that (Pn) does not converge to the identity operator with respect
to the operator norm unless Pn = I for all n sufficiently large.

15. Let H = L2(T3; R3) be the Hilbert space of 2π periodic, square-integrable,
vector-valued functions u : T3 → R3, with the inner product

〈u, v〉 =
∫

T3

u(x) · v(x)dx.

We define the subspaces V and W of H by

V = {v ∈ C∞(T3; R3) : divv = 0},
W = {w ∈ C∞(T3; R3) : w = ∇ϕ, for some ϕ : T3 :→ R}.

Show that H is the orthogonal direct sum of V and W.

5.6 Envisaged outcomes

At the end of this chapter, the student should be familiar with
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• The concepts of inner product space, Hilbert space, the main examples
of Hilbert spaces, and simple properties such as the Cauchy-Schwarz
inequality.

• The concepts of orthogonality, orthogonal projection, minimal distance
from a closed subspace.

• The notion of orthonormal sequence, Bessel’s inequality and its conse-
quences, the notion of orthonormal basis.

• The notion of Fourier series in L2. In the exercises, the student should
be able to find the Fourier coefficients of a periodic function and discuss
the convergence of the corresponding Fourier series.

• Know how to characterize the dual of a Hilbert space via the Riesz rep-
resentation theorem.
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6 Bounded operators on Hilbert spaces and introduction

to spectral theory

In this chapter we describe some important classes of bounded linear oper-
ators on Hilbert spaces, including self-adjoint operators. We also introduce
the Fredholm alternative principle and some properties of weak convergence
on Hilbert spaces. Then, we introduce spectral theory for bounded linear op-
erators on Hilbert spaces and derive some basic result such as the spectral
decomposition of compact self-adjoint operators.

6.1 The adjoint of an operator

An important consequence of the Riesz representation theorem is the existence
of the adjoint of a bounded operator on a Hilbert space. The defining property
of the adjoint A∗ ∈ B(H) of an operator A ∈ M(H) is that

〈x, Ay〉 = 〈A∗x, y〉 for all x, y ∈ H.

To prove that A∗ exists and is uniquely defined, we have to show that for
every x ∈ H, there is a unique vector z ∈ H, depending linearly on x, such
that

〈z, y〉 = 〈x, Ay〉 for all x, y ∈ H. (58)

For fixed x, the map ϕx defined by

ϕx(y) = 〈x, Ay〉

is a bounded linear functional on H, with ‖ϕx‖ ≤ ‖A‖‖x‖. By the Riesz
representation theorem, there is a unique z ∈ H such that ϕx(y) = 〈z, y〉. This
z satisfies (58), so we set A∗x = z. The linearity of A∗ is left as an exercise.

6.1 example. The matrix of the adjoint of a linear map on Rn with matrix A
is AT , since

x · (Ay) = (ATx) · y.

In component notation, we have

n

∑
i=1

(
n

∑
j=1

aijyj

)
=

n

∑
j=1

(
n

∑
i=1

aijxi

)
yj.

The matrix of the adjoint of a linear map on Cn with complex matrix A is the
Hermitian conjugate matrix,

A∗ = AT .

6.2 example. Suppose that S and T are the right and left shift operators on
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6. Bounded operators on Hilbert spaces and spectral theory

the sequence space `2(N), defined by

S(x1, x2, x3, . . .) = (0, x1, x2, . . .), T(x1, x2, x3, . . .) = (x2, x3, . . .).

Then T = S∗, since

〈x, Sy〉 = x2y1 + x2y2 + x4y3 + . . . = 〈Tx, y〉

6.3 exercise. Let K : L2([0, 1])→ L2([0, 1]) be an integral operator of the form

K f (x) =
1∫

0

k(x, y) f (y)dy,

where k : [0, 1]× [0, 1]→ C. Then prove that the adjoint operator

K∗ f (x) =
1∫

0

k(y, x) f (y)dy

is the integral operator with the complex conjugate, transpose kernel.

6.4 exercise. Prove that A∗∗ = A for all A ∈ B(H).

The adjoint plays a crucial role in studying the solvability of a linear equa-
tion

Ax = y (59)

where A : H → H is a bounded linear operator. Let z ∈ H be any solution of
the homogeneous adjoint equation,

A∗z = 0.

We take the inner product of (59) with z. The inner product on the left-hand
side vanishes because

〈Ax, z〉 = 〈x, A∗z〉 = 0.

Hence, a necessary condition for a solution x of (59) to exist is that 〈y, z〉 = 0
for all z ∈ kerA∗, meaning that y ∈ (kerA∗)⊥. This condition on y is not
always sufficient to guarantee the solvability of (59); the most we can say for
general bounded operators is the following result. First, a simple exercise

6.5 exercise. Let A ⊂ H. Then A⊥⊥ = (A⊥)⊥ = [A], where [A] is the closed
linear span of A, i.e. the closure of the linear space generated by all finite
linear combinations of vectors of A. To see this, we first observe that A⊥⊥ is a
closed subspace. Moreover, A ⊂ A⊥⊥. Indeed, let x ∈ A, and let y ∈ A⊥. Then
〈x, y〉 = 0, which means x ∈ A⊥⊥. So A⊥⊥ is a closed linear subspace that
contains A, and since [A] is the smallest linear subspace containing A we have
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6.1. The adjoint of an operator

A⊥⊥ ⊃ [A]. On the other hand, assuming that [A] 6= A⊥⊥, let x ∈ A⊥⊥ \ [A].

We can always find x ∈ [A]
⊥

. Since [A] ⊃ A, then [A]
⊥ ⊂ A⊥, and therefore

x ∈ A⊥. But then x ∈ A⊥ ∩ A⊥⊥, which is only possible if x = 0. This proves
the assertion.

6.6 theorem. If A : H → H is a bounded linear operator, then

ranA = (kerA∗)⊥, kerA = (ranA∗)⊥. (60)

Proof. If x ∈ ranA, there is a y ∈ H such that x = Ay. For any z ∈ kerA∗, we
then havs

〈x, z〉 = 〈Ay, z〉 = 〈y, A∗z〉 = 0.

This proves that ranA ⊂ (kerA∗)⊥. Since (kerA∗)⊥ is closed, it follows that
ranA ⊂ (kerA∗)⊥. On the other hand, if x ∈ (ranA)⊥, then for all y ∈ H we
have

0 = 〈Ay, x〉 = 〈y, A∗x〉.

Since y ∈ H is arbitrary, this implies that A∗x = 0, i.e. x ∈ kerA∗. Hence,
(ranA)⊥ ⊂ kerA∗. By taking the orthogonal complement of this relation, we
get

(kerA∗)⊥ ⊂ (ranA)⊥⊥ = ranA,

which proves the first part of (60). To prove the second part, we apply the first
part to A∗ instead of A, use that the kernel of A is a closed linear subspace,
use A = A∗∗, and take orthogonal complements. The details are left as an
exercise.

An equivalent formulation of this theorem is that if A is a bounded linear
operator on H, then H is the orthogonal direct sum

H = ranA⊕ kerA∗.

If A has closed range, then we obtain the following necessary and sufficient
condition for the solvability of (59)

6.7 theorem. Suppose that A : H → H is a bounded linear operator on a Hilbert
space H with closed range. Then the equation Ax = y has a solution x if and only if
y is orthogonal to kerA∗.

This theorem provides a useful general method of proving existence from
uniqueness: if A has closed range, and the solution of the adjoint problem
A∗x = y is unique, then kerA∗ = {0}, so every y is orthogonal to kerA∗.
Hence, a solution of Ax = y exists for every y ∈ H. The condition that A has
closed range is implied by an estimate of the form c‖x‖ ≤ ‖Ax‖, as shown
in Proposition 4.46. A commonly occurring dichotomy for the solvability of a
linear equation is summarized in the following Fredholm alternative principle.
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6. Bounded operators on Hilbert spaces and spectral theory

6.8 definition. A bounded linear operator A : H → H on a Hilbert space H
satisfies the Fredholm alternative if one of the following two alternatives holds:

(a) Either Ax = 0, A∗x = 0 have only the zero solution, and the equations
Ax = y, A∗x = y have a unique solution x ∈ H for every y ∈ H,

(b) Or Ax = 0, A∗x = 0 have nontrivial, finite-dimensional solutions spaces
of the same dimension, Ax = y has a (nonunique) solution if and only
if y ⊥ z for every solution z of A∗z = 0, and A∗x = y has a (nonunique)
solution if and only if y ⊥ z for every solution z of Az = 0.

Any linear operator A : Cn → Cn on a finite-dimensional space, associated
with an n× n system of linear equations Ax = y, satisfies the Fredholm alter-
native. The ranges of A and A∗ are closed because they are finite-dimensional.
From linear algebra, the rank of A∗ is equal to the rank of A, and therefore
the nullity of A is equal to the nullity of A∗. The Fredholm alternative then
follows from Theorem 6.7. Two things can go wrong with the Fredholm alter-
native in Definition 6.8 for bounded operators A on an infinite-dimensional
space. First, ranA need not be closed; and second, even if ranA is closed, it
is not true, in general, that kerA and kerA∗ have the same dimension. As a
result, the equation Ax = y may be solvable for all y ∈ H even though A is
not one-to-one, or Ax = y may not be solvable for all y ∈ H even though A is
one-to-one. We illustrate these possibilities with some examples.

6.9 example. Consider the multiplication operator M : L2([0, 1]) → L2([0, 1])
defined by

M f (x) = x f (x).

Then M∗ = M, and M is one-to-one, so every g ∈ L2([0, 1]) is orthogonal to
kerM∗; but the range of M is a proper dense subspace of L2([0, 1]), so M f = g
is not solvable for every g ∈ L2([0, 1]). We will get back to this example below.

6.10 example. The range of the right shift operator S : `2(N) → `2(N), de-
fined in Example 6.2, is closed since it consists of y = (y1, y2, y3, . . .) ∈ `2(N)
such that y1 = 0. The left shift operator T = S∗ is singular since its kernel is
the one-dimensional space with basis {(1, 0, 0, . . .)}. The equation Sx = y, or
(0, x1, x2, . . .) = (y1, y2, y3, . . .), is solvable if and only if y1 = 0, or y ⊥ kerT,
which verifies Theorem 6.7 in this case. If a solution exists, then it is unique.
On the other hand, the equation Tx = y is solvable for every y ∈ `2(N), even
though T is not one-to-one, and the solution is not unique.

6.11 definition. A bounded linear operator A : H → H on a Hilbert space is
self-adjoint if A∗ = A.

Equivalently, a bounded linear operator A on H is self-adjoint if

〈x, Ay〉 = 〈Ax, y〉 for all x, y ∈ H.

6.12 example. From Example 6.1, a linear map on Rn with matrix A is self-
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6.1. The adjoint of an operator

adjoint if and only if A is symmetric, meaning that A = AT , where AT is the
transpose of A. A linear map on Cn with matrix A is self-adjoint if and only
if A is Hermitian, meaning that A = A∗.

6.13 example. From example 6.3, an integral operator K : L2([0, 1])→ L2([0, 1])

K f (x) =
1∫

0

k(x, y) f (y)dy,

is self-adjoint if and only if k(x, y) = k(y, x).

Given a linear operator A : H → H, we may define a sesquilinear form

a : H × H → C

by a(x, y) = 〈x, Ay〉. If A is self-adjoint, then this form is Hermitian symmetric,
or symmetric, meaning that

a(x, y) = a(y, x).

It follows that the associated quadratic form q(x) = a(x, x), or

q(x) = 〈x, Ax〉,

is real-valued. We say that A is nonnegative if it is self-adjoint and 〈x, Ax〉 ≥ 0
for all x ∈ H. We say that A is positive, or positive definite, if it is self-adjoint
and 〈x, Ax〉 > 0 for every nonzero x ∈ H. If A is a positive, bounded operator,
then

(x, y) = 〈x, Ay〉

defines an inner product on H. If, in addition, there is a constant c > 0 such
that

〈x, Ax〉 ≥ c‖x‖2 for all x ∈ H,

then we say that A is bounded from below, and the norm associated with (·, ·) is
equivalent to the norm associated with 〈·, ·〉.

The quadratic form associated with a self-adjoint operator determines the
norm of the operator.

6.14 lemma (Norm of an adjoint operator via quadratic form). If A is a bounded
self-adjoint operator on a Hilbert space H, then

‖A‖ = sup
‖x‖=1

|〈x, Ax〉|.
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6. Bounded operators on Hilbert spaces and spectral theory

Proof. Let

α = sup
‖x‖=1

|〈x, Ax〉|.

The inequality α ≤ ‖A‖ is immediate, since

|〈x, Ax〉| ≤ ‖Ax‖‖x‖ ≤ ‖A‖‖x‖2.

To prove the reverse inequality, we use the definition of the norm,

‖A‖ = sup
‖x‖=1

‖Ax‖.

For any z ∈ H we have

‖z‖ = sup
‖y‖=1

|〈y, z〉|.

It follows that

‖A‖ = sup{|〈y, Ax〉| : ‖x‖ = 1, ‖y‖ = 1}. (61)

A tedious but simple computation yields

〈y, Ax〉 = 1
4
[〈x + y, A(x + y)〉 − 〈x− y, A(x− y)〉

−i〈x + iy, A(x + iy)〉+ i〈x− iy, A(x− iy)〉] .

Since A is self-adjoint, the first two terms above are real, and the last two are
imaginary. We replace y by eiϕy where ϕ ∈ R is chosen so that 〈eiϕy, Ax〉 is
real. Then the imaginary terms vanish, and we find that

|〈y, Ax〉|2 =
1
16
|〈x + y, A(x + y)〉 − 〈x− y, A(x− y)〉|2

≤ 1
16

α2(‖x + y‖2 + ‖x− y‖2)2

=
1
4

α2(‖x‖2 + ‖y‖2)2,

where we have used the definition of α and the parallelogram law. Using this
result in (61), we conclude that ‖A‖ ≤ α.

As a corollary, we have the following result.

6.15 corollary. If A is a bounded operator on a Hilbert space then ‖AA∗‖ =
‖A‖2. If A is self adjoint, then ‖A2‖ = ‖A‖2.

Proof. The definition of ‖A‖ and the application of Lemma 6.14 to the self-
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adjoint operator A∗A imply that

‖A‖2 = sup
‖x‖=1

|〈Ax, Ax〉| = sup
‖x‖=1

|〈x, A∗Ax〉| = ‖A∗A‖.

Hence, if A is self-adjoint, then ‖A‖2 = ‖A2‖.

6.2 Weak convergence in a Hilbert space

A sequence in a Hilbert space H converges weakly to x ∈ H if

lim
n→+∞

〈xn, y〉 = 〈x, y〉 for all y ∈ H.

Weak convergence is usually written as

xn ⇀ x as n→ +∞,

to distinguish it from strong, or norm, convergence.

6.16 example. Suppose that H = `2(N). Let

en = (0, 0, . . . , 0, 1, 0, . . .)

be the standard basis vector whose n-th term is 1 and whose other terms are
0. If (y1, y2, y3, . . .) ∈ `2(N), then

〈en, y〉 = yn → 0 as n→ +∞,

since ∑ |yn|2 converges. Hence, en ⇀ 0 as n → +∞. On the other hand, ‖en −
em‖ =

√
2 for all n 6= m, so the sequence (en) cannot converge strongly.

Clearly, all the result we have proven on the weak topologies of Banach
spaces apply to Hilbert spaces.

6.17 example. In example 6.16, we saw that the bounded sequence (en) of
standard basis elements in `2(N) converges weakly to zero. The unbounded
sequence (nen), where

nen = (0, 0, . . . , 0, n, 0, . . .),

does not converge weakly, however, even though the coordinate sequence with
respect to the basis (en) converges to zero. For example,

x =
(

n−3/4
)+∞

n=1

belongs to `2(N), and 〈nen, x〉 = n1/4 does not converge as n→ +∞.

The examples we saw in subsection 3.4 on the weak convergence in Lp

spaces in the case p = 2 are a special case of weak convergence in a Hilbert
space. In particular, the phenomena of oscillation, concentration, and escape
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to infinity can occur.
As we know, the norm of the limit of a weakly convergent sequence may

be strictly less than the norms of the terms in the sequence, corresponding to
a loss of ‘energy’ in oscillations, at a singularity, or by escape to infinity in the
weak limit. In each case, the expansion of fn in any orthonormal basis contains
coefficients that wander off to infinity. If the norms of a weakly convergent
sequence converge to the norm of the weak limit, then the sequence converges
strongly.

6.18 proposition. If (xn) converges weakly to x and

lim
n→+∞

‖xn‖ = ‖x‖,

then (xn) converges strongly to x.

Proof. Expansion of the inner product gives

‖xn − x‖2 = ‖xn‖2 − 〈xn, x〉 − 〈x, xn〉+ ‖x‖2.

If xn converges weakly to x, then 〈xn, x〉 →< 〈x, x〉 = ‖x‖2. Hence, if we also
have ‖xn‖ → ‖x‖, then ‖xn − x‖2 → 0, meaning that xn → x strongly.

6.19 definition. We say that a functional f : X → R defined on a Banach
space X is weakly lower semicontinuous if for every sequence (xn) in X which
converges weakly to x ∈ X, we have

f (x) ≤ lim inf
n→+∞

f (xn).

We say that a subset C ⊂ X of a Banach space is weakly closed if for every
sequence xn in C which converges weakly to x ∈ X we have x ∈ C.

6.20 theorem (Direct method of calculus of variations). Suppose that f : K →
R is a weakly lower semicontinuous functional on a weakly closed, bounded subset K
of a Hilbert space H. Then f is bounded from below and attains its infimum, i.e. there
exists x ∈ K such that

f (x) = min
y∈K

f (y).

Proof. Let m = infy∈K f (y). Let yn be a sequence in K such that f (yn) → m.
Since K is bounded in a reflexive Banach space, there is a subsequence ynk of
yn which converges weakly to some y ∈ H. Since K is weakly closed, we have
that y ∈ K. Since f is weakly lower semicontinuous, we have

f (y) ≤ lim inf
k→+∞

f (ynk ) = m,

hence f (y) ≤ d. But m is the infimum of f on K, and y ∈ K. Therefore f (y) =
m, which proves the assertion.

The above theorem shows the tremendous impact of weak compactness
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theorems on the calculus of variation, see example 0.8. Now we have the
technology to achieve the solution of a minimization problem on an infinite
dimensional space. Clearly, the price we pay in order to get existence of a
minimum is that the functional should be weakly lower semicontinuous and
the set K be weakly closed. Such assumptions are clearly stricter than strong
lower semicontinuity and strong closedness, since there are more weakly con-
vergent sequences than strongly convergent ones, so one has ‘more tests to
perform’ in order to check both conditions.

6.3 The spectrum

Spectral theory provides a powerful way to understand linear operators by
decomposing the space on which they act into invariant subspaces on which
their action is simple. In the finite-dimensional case, the spectrum of a linear
operator consists of its eigenvalues. The action of the operator on the subspace
of eigenvectors with a given eigenvalue is just multiplication by the eigen-
value. As we will see, the spectral theory of bounded linear operators on infi-
nite dimensional spaces is more involved. For example, an operator may have
a continuous spectrum in addition to, or instead of, a point spectrum of eigenval-
ues. A particularly simple and important case is that of compact, self-adjoint
operators. Compact operators may be approximated by finite-dimensional op-
erators, and their spectral theory is close to that of finite-dimensional opera-
tors.

The student at this level should be familiar with the diagonalization of
squared matrices, with concepts such as eigenvalue, eigenvector, eigenspace,
algebraic multiplicity and geometric multiplicity of an eigenvalue, character-
istic polynomial of a matrix. The student should also be familiar with the
following important result in linear algebra: every self-adjoint squared (finite
dimensional) matrix has an orthonormal basis of eigenvectors (which means
it is diagonalisable).

A bounded linear operator on an infinite-dimensional Hilbert space need
not have any eigenvalues at all, even it if is self-adjoint. Thus, we cannot
hope to find, in general, an orthonormal basis of the space consisting entirely
of eigenvectors. It is therefore necessary to define the spectrum of a linear
operator on an infinite-dimensional space in a more general way than as the
set of eigenvalues. We denote the space of bounded linear operators on a
Hilbert space H by L(H).

6.21 definition. The resolvent set of an operator A ∈ L(H), denoted by ρ(A),
is the set of complex numbers λ such that (A− λI) : H → H is one-to-one and
onto. The spectrum of A, denoted by σ(A), is the complement of the resolvent
set in C, meaning that σ(A) = C \ ρ(A).

If A− λI is one-to-one and onto, then the open mapping theorem implies
that (A− λI)−1 is bounded. Hence, when λ ∈ ρ(A), both A− λI and (A−
λI)−1 are one-to-one, onto, bounded linear operators.

As in the finite-dimensional case, a complex number λ is called an eigen-
values of A if there is a nonzero vector u ∈ H such that Au = λu. In that case,
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ker(A− λI) 6= {0}, so A− λI is not one-to-one, and λ ∈ σ(A). This is not the
only way, however, that a complex number can belong to the spectrum. We
subdivide the spectrum of a bounded linear operator as follows.

6.22 definition. Suppose that A is a bounded linear operator on a Hilbert
space H.

(a) The point spectrum of A consists of all λ ∈ σ(A) such that A− λI is not
one-to-one. In this case λ is called an eigenvalues of A.

(b) The continuous spectrum of A consists of all λ ∈ σ(A) such that A− λI

is one-to-one but not onto, and ran(A− λI) is dense in H.

(c) The residual spectrum of A consists of all λ ∈ σ(A) such that A− λI is
one-to-one but not onto, and ran(A− λI) is not dense in H.

6.23 example. Let H = L2([0, 1]), and define the multiplication operator M :
H → H by

M f (x) = x f (x).

Then M is bounded with ‖M‖ = 1 (exercise!). If M f = λ f , then it is easily
seen that f (x) = 0 for almost every x ∈ [0, 1], so f = 0 in L2([0, 1]). Thus,
f has no eigenvalues. If λ 6∈ [0, 1], then (x − λ)−1 f (x) ∈ L2([0, 1]) for any
f ∈ L2([0, 1]) because (x − λ) is bounded away from zero on [0, 1]. Thus,
C \ [0, 1] is in the resolvent set of M. If λ ∈ [0, 1], then M − λI is not onto,
because c(x − λ)−1 6∈ L2([0, 1]) for c 6= 0, so the nonzero constant function
c does not belong to the range of M − λI. The range of M − λI, however, is
dense. To see this, let f ∈ L2([0, 1]), let

fn(x) =

{
f (x) if |x− λ| ≥ 1/n
0 if |x− λ| < 1/n.

Then fn converges to f in L2([0, 1]), and fn ∈ Ran(M − λI), since (x −
λ)−1 fn(x) ∈ L2([0, 1]). It follows that σ(M) = [0, 1], and that every λ ∈ σ(M)
belongs to the continuous spectrum of M.

If λ belongs to the resolvent set ρ(A) of a linear operator A, then A− λI

has an everywhere defined, bounded inverse. The operator

Rλ = (λI− A)−1

is called the resolvent operator of A at λ. The resolvent operator of A is an
operator-valued function defined on the subset ρ(C).

An operator-valued function F : Ω → L(H), defined on an open subset Ω
of the complex plane C is said to be analytic at z0 ∈ Ω if there are operators
Fn ∈ L(H) and a δ > 0 such that

F(x) =
+∞

∑
n=0

(z− z0)
nFn,
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where the power series on the right-hand side converges with respect to the
operator norm on L(H) in a disc |z− z0| < δ. We say that F is analytic in Ω if
it is analytic at any point of Ω.

6.24 exercise (Neumann Series). Suppose that K : X → X is a bounded linear
operator on a Banach space X with ‖K‖ < 1. Prove that I−K is invertible and

(I− K)−1 = I + K + K2 + K3 + . . . ,

where the series on the right hand side converges uniformly in L(X).

6.25 proposition. If A is a bounded linear operator on a Hilbert space H, then the
resolvent set ρ(A) is an open subset of C that contains the exterior disc {λ ∈ C :
|λ| > ‖A‖}. The resolvent Rλ is an operator valued analytic function of λ on ρ(A).

Proof. Suppose that λ0 ∈ ρ(A). Then we may write

λI− A = (λ0I− A)[I− (λ0 − λ)(λ0I− A)−1].

If |λ0 − λ| < ‖(λ0I− A)−1‖−1, then we can invert the operator on the right-
hand-side by the Neumann series (see exercise 6.24). Hence, there is an open
disk in the complex plane with center λ0 that is contained in ρ(A). Moreover,
the resolvent Rλ is given by an operator-norm convergent Taylor series in the
disc, so it is analytic in ρ(A). To see this, we compute

Rλ = [I− (λ0 − λ)Rλ0 ]
−1Rλ0 =

+∞

∑
k=1

(λ0 − λ)kRk+1
λ0

.

If |λ| > ‖A‖, then the Neumann series also shows that λ(I− Aλ−1) is invert-
ible, so λ ∈ ρ(A).

Since the spectrum σ(A) of A is the complement of the resolvent set, it
follows that the spectrum is a closed subset of C, and

σ(A) ⊂ {z ∈ C : |z| ≤ ‖A‖}.

The spectral radius of A, denoted by r(A), is the radius of the smallest disk
centered at zero that contains σ(A),

r(A) = sup{|λ| : λ ∈ σ(A)}.

We can refine the above proposition 6.25 as follows.

6.26 proposition. If A is a bounded linear operator, then

r(A) = lim
n→+∞

‖An‖1/n. (62)

If A is self-adjoint, then r(A) = ‖A‖.

Proof. Omitted.
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Although the spectral radius of a self-adjoint operator is equal to its norm,
the spectral radius does not provide a norm on the space of all bounded
operators. In particular, r(A) = 0 does not imply that A = 0. If r(A) = 0,
then we say that A is a nilpotent operator (as an example consider a nontrivial
Jordan block).

6.27 proposition. The spectrum of a bounded linear operator on a Hilbert space is
nonempty.

We omit the proof.

6.4 The spectral theorem for compact, self-adjoint operators

In this section, we analyze the spectrum of a compact, self-adjoint operator.
The spectrum consists entirely of eigenvalues, with the possible exception of
zero, which may belong to the continuous spectrum. We begin by proving
some basic properties of the spectrum of a bounded, self-adjoint operator.

6.28 lemma. The eigenvalues of a bounded, self-adjoint operator are real, and eigen-
vectors associated with different eigenvalues are orthogonal.

Proof. If A : H → H is self-adjoint, and Ax = λx with x 6= 0, then

λ〈x, x〉 = 〈x, Ax〉 = 〈Ax, x〉 = λ〈x, x〉,

and λ = λ, i.e. λ ∈ R. If Ax = λx and Ay = µy, where λ and µ are real, then

λ〈x, y〉 = 〈Ax, y〉 = 〈x, Ay〉 = µ〈x, y〉.

It follows that if λ 6= µ, then 〈x, y〉 = 0 and x ⊥ y.

A linear subspace M of H is called an invariant subspace of a linear operator
A on H if Ax ∈ M for all x ∈ M. In that case, the restriction A|M of A to M is a
linear operator on M. Suppose that H = M⊕ N is the direct sum of invariant
subspaces M and N of A. Then every x ∈ H may be written as x = y + z with
y ∈ M and z ∈ N, and

Ax = A|My + A|Nz.

Thus, the action of A on H is determined by the actions on the invariant
subspaces.

6.29 example. Consider matrices acting on Cd = Cm ⊕Cn, where d = m + n.
A d× d matrix A leaves Cm invariant if it has the block form

A =

(
B D
0 C

)
,

where B is an m×m matrix, D is m× n, and C is n× n. The matrix A leaves
both Cm and the complementary subspace Cn invariant if D = 0.
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An invariant subspace of a non-diagonalizable operator may have no com-
plementary invariant subspace. However, the orthogonal complement of an
invariant subspace of a self-adjoint operator is also invariant, as we prove in
the following lemma. Thus, we can decompose the action of a self-adjoint op-
erator on a linear space into action on smaller orthogonal invariant subspaces.

6.30 lemma. If A is a bounded, self-adjoint operator on a Hilbert space H and M is
an invariant subspace of A, then M⊥ is an invariant subspace of A.

Proof. If x ∈ M⊥ and y ∈ M, then

〈y, Ax〉 = 〈Ay, x〉 = 0

because A = A∗ and Ay ∈ M. Therefore, Ax ∈ M⊥.

Next we show that the whole spectrum - not just the point spectrum - of a
bounded, self-adjoint operator is real, and that the residual spectrum is empty.
We begin with a preliminary proposition.

6.31 proposition. If λ belongs to the residual spectrum of a bounded operator A on
a Hilbert space, then λ is an eigenvalues of A∗.

Proof. If λ belongs to the residual spectrum of a bounded operator A ∈ L(H),
then Ran(A− λI) is not dense in H. Hence, there is a nonzero vector x ∈ H
such that x ⊥ Ran(A− λI). Theorem 6.6 then implies that x ∈ Ker(A∗ − λI).
Hence, λ is an eigenvalue of A∗.

6.32 lemma. If A is a bounded, self-adjoint operator on a Hilbert space, then the
spectrum of A is real and is contained in the interval [−‖A‖, ‖A‖].

Proof. We have shown that r(A) ≤ ‖A‖, so we only have to prove that the
spectrum is real. Suppose that λ = a + ib ∈ C, where a, b ∈ R and b 6= 0. For
any x ∈ H, we have

‖(A− λI)x‖2 = 〈(A− λI)x, (A− λI)x〉
= 〈(A− aI)x, (A− aI)x〉+ 〈(−ib)x, , (−ib)x〉
+ 〈(A− aI)x, (−ib)x〉+ 〈(−ib)x, (A− aI)x〉
= ‖(A− aI)x‖2 + b2‖x‖2 ≥ b2‖x‖2.

It follows from this estimate and Proposition 4.46 that A − λI is one-to-one
and has closed range. If Ran(A−λI) 6= H, then λ belongs to the residual spec-
trum of A, and, by proposition 6.31, λ = a− ib is an eigenvalue of A. Thus, A
has an eigenvalue that does not belong to R, which contradicts Lemma 6.28.
It follows that λ ∈ ρ(A) if λ is not real.

6.33 corollary. The residual spectrum of a bounded, self-adjoint operator is empty.

Proof. From Lemma 6.32, the point spectrum and the residual spectrum are
disjoint subsets of R. So if λ ∈ R belongs to the residual spectrum, Proposition
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6. Bounded operators on Hilbert spaces and spectral theory

6.31 implies that λ is also an eigenvalue, which is a contradiction.

Bounded linear operators on an infinite dimensional Hilbert space do not
always behave like operators on a finite dimensional space. We have seen in
Example 6.23 that a bounded, self-adjoint operator may have no eigenvalues,
while the identity operator on an infinite dimensional Hilbert space has a
nonzero eigenvalues of infinite multiplicity. The properties of compact oper-
ators are much closer to those of operators on finite dimensional spaces, and
we will study their spectral theory next.

6.34 proposition. A nonzero eigenvalue of a compact, self-adjoint operator A has
finite multiplicity. A countably infinite set of nonzero eigenvalues has zero as accu-
mulation point, and no other accumulation points.

Proof. Suppose by contradiction that λ is a nonzero eigenvalue with infinite
multiplicity. Then, there is a sequence (en) of orthonormal eigenvectors. This
sequence is bounded, but (Aen) does not have a convergent subsequence be-
cause Aen = λen. Indeed, ‖en − em‖2 = ‖en‖2 + ‖em‖2 = 1. This contradicts
the compactness of A.

If A has a countably infinite set {λn} of nonzero eigenvalues, with en
as corresponding orthonormal eigenvectors, then, since the eigenvalues are
bounded by ‖A‖, there is a convergent subsequence (λnk ). If λnk → λ and
λ 6= 0, then the orthogonal sequence of eigenvectors ( fnk ), where fnk = λ−1

nk
enk

and ‖enk‖ = 1, would be bounded. But (A fnk ) has no convergent subsequence
since A fnk = enk .

To motivate the statement of the spectral theorem for compact, self-adjoint
operators, suppose that x ∈ H is given by

x = ∑
k

ckek + z, (63)

where {ek} is an orthonormal set of eigenvectors of A with corresponding
nonzero eigenvalues λk, z ∈ ker(A), and ck ∈ C. Then

Ax = ∑
k

λckek.

Let Pk denote the one-dimensional orthogonal projection onto the subspace
spanned by ek,

Pkx = 〈ek, x〉ek.

From Lemma 6.28, we have z ⊥ ek, so ck = 〈ek, x〉 and

Ax = ∑
k

λkPkx. (64)

If λk has finite multiplicity mk > 1, meaning that the dimension of the as-
sociated eigenspace Ek ⊂ H is greater than one, then we may combine the
one-dimensional projections associated with the same eigenvalues. In doing
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so, we may represent A by a sum of the same form as (64), in which λk are
distinct, and the Pk are orthogonal projections onto the eigenspaces Ek.

The spectral theorem for compact, self-adjoint operators states that any
x ∈ H can be expanded in the form (63), and that A can be expressed as a
sum of orthogonal projections as in (64).

6.35 theorem (Spectral theorem for compact, self-adjoint operators). Let A :
H → H be a compact, self-adjoint operator on a Hilbert space H. There is an or-
thonormal basis of H consisting of eigenvectors of A. The nonzero eigenvalues of A
form a finite or countably infinite set {λk} of real numbers, and

A = ∑
k

λkPk, (65)

where Pk is the orthogonal projection onto the finite-dimensional eigenspace of eigen-
vectors with eigenvalues λk. If the number of nonzero eigenvalues is countably infi-
nite, then the series in (65) converges to A in the operator norm.

We omit the proof.
The above theorem is only one simple version of spectral theorem for com-

pact operators. It can be generalized and extended to many other cases which
will not be considered here. We emphasize in particular that the property

σ(T) \ {0} = σp(T) \ {0}

holds for all compact operators on a Hilbert space, not only for the self-adjoint
ones. We omit the proof.

6.5 More on compact operators

Before we can apply the spectral theorem for compact, self-adjoint operators,
we have to check that an operator is compact. In this subsection we discuss
some ways to do this, and also give some examples of compact operators.

The most direct way to prove that an operator is compact is to verify
the definition by showing that if E is a bounded subset of H, then the set
A(E) = {Ax : x ∈ E} is precompact, i.e. with compact closure. In many
examples, this can be done by using an appropriate condition for compact-
ness, such as the Arzelá-Ascoli theorem or Kolmogorov-Riesz-Frechet Theo-
rem. The following theorem characterizes precompact sets in a general, sepa-
rable Hilbert space. We omit the proof.

6.36 theorem. Let E be a subset of an infinite-dimensional, separable Hilbert space
H.

(a) If E is precompact, then for every orthonormal set {en : n ∈ N} and every
ε > 0, there is an N such that

+∞

∑
n=N+1

|〈en, x〉|2 < ε for all x ∈ E. (66)
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6. Bounded operators on Hilbert spaces and spectral theory

(b) If E is bounded and there is an orthonormal basis {en} of H with the property
that for every ε > 0 there is an N such that (66) holds, then E is precompact.

6.37 example. Let H = `2(N). The Hilbert cube

C = {(x1, x2, x3, . . . , xn, . . .) : |xn| ≤ 1/n}

is closed and precompact. Hence C is a compact subset of H.

6.38 exercise. Consider the diagonal operator A : `2(N)→ `2(N) defined by

A(x1, x2, x3, . . . , xn, . . .) = (λ1x1, λ2x2, λ2x3, . . . , λnxn, . . .), (67)

where λn ∈ R and λn is decreasing with λn → 0 as n → +∞. Prove that A is
compact.

Proposition 4.26 implies that the uniform limit of compact operators is
compact. An operator with finite rank is compact. Therefore, another way to
prove that A is compact is to show that A is the limit of a uniformly convergent
sequence of finite-rank operators. One such class of compact operators is the
class of Hilbert-Schmidt operators.

6.39 definition. A bounded linear operator A on a separable Hilbert space
H is Hilbert-Schmidt if there is an orthonormal basis {en : n ∈N} such that

+∞

∑
n=1
‖Aen‖2 < +∞ (68)

If A is Hilbert-Schmidt, then

‖A‖HS =

√√√√+∞

∑
n=1
‖Aen‖2 (69)

is called the Hilbert-Schmidt norm of A.

One can show that the sum in (68) is finite in every orthonormal basis if it
is finite in one orthonormal basis, and the norm (69) does not depend on the
choice of the basis.

6.40 theorem. A Hilbert-Schmidt operator is compact.

Proof. (Sketch) Suppose that A is a Hilbert-Schmidt operator and {en : n ∈
N} is an orthonormal basis. If PN is the orthogonal projection onto the finite-
dimensional space spanned by {e1, . . . , en}, then Pn A is a finite rank operator,
and one can check that PN A→ A uniformly as N → +∞.

6.41 example. The diagonal operator A : `2(N) → `2(N) defined in (67) is
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Hilbert-Schmidt if and only if

+∞

∑
n=1
|λn|2 < +∞.

6.42 example. Let Ω ⊂ Rn. One can show that an integral operator K on
L2(Ω),

K f (x) =
∫
Ω

k(x, y) f (y)dy,

is Hilbert-Schmidt if and only if k ∈ L2(Ω×Ω), meaning that∫
Ω×Ω

|k(x, y)|2dxdy < +∞.

The Hilbert-Schmidt norm of K is

‖K‖HS =

 ∫
Ω×Ω

|k(x, y)|2dxdy

1/2

.

If K is a self-adjoint, Hilbert-Schmidt operator then there is an orthonormal
basis {ϕn : n ∈N} of L2(Ω) consisting of eigenvectors of K, such that∫

Ω

k(x, y)ϕn(y)dy = λn ϕn(y).

Then, one can prove that

k(x, y) =
+∞

∑
n=1

λn ϕn(x)ϕn(y).

We omit the proof.

6.43 exercise. Prove that the Volterra operator

(T f )(x) =
x∫

0

f (t)dt

is compact in H = L2([0, 1]).
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6. Bounded operators on Hilbert spaces and spectral theory

Solution. Let B1(0) be the closed unit ball of H. For f ∈ B1(0) we consider

1∫
0

|(T f )(x + h)− (T f )(x)|2 dx =

1∫
0

∣∣∣∣∣∣
x+h∫
x

f (t)dt

∣∣∣∣∣∣
2

dx

≤
1∫

0

∣∣∣∣∣∣
x+h∫
x

dt

∣∣∣∣∣∣
∣∣∣∣∣∣

x+h∫
x

f (t)2dt

∣∣∣∣∣∣ dx ≤
1∫

0

|h|
1∫

0

f (t)2dtdx ≤ |h| .

Hence,

‖(T f )(·+ h)− (T f )‖L2 ≤ |h|1/2 ,

and the assertion follows form Kolmogorov-Riesz-Frechet Theorem.

6.44 exercise. Prove that the Volterra operator in the exercise above has no
eigenvalues.
Solution. Assume λ 6= 0 is an eigenvalue. Then, for f 6= 0 in L2 we have

λ f (x) =
x∫

0

f (t)dt .

For x, y ∈ [0, 1],

f (x)− f (y) =
1
λ

x∫
y

f (t)dt

and therefore

| f (x)− f (y)| ≤ |x− y|1/2

λ
‖ f ‖L2

which shows that f is continuous. Hence, the eigenvalue condition implies f
is C1. We can therefore write

λ f ′(x) = f (x)

and since f (0) = 0 we get, by uniqueness of solutions to the Cauchy problem,
that f = 0, a contradiction.

6.6 Exercises

1. Let H be a Hilbert space. Prove that for all A, B ∈ L(H) and λ ∈ C, one
has

(a) A∗∗ = A

(b) (AB)∗ = B∗A∗

(c) (λA)∗ = λA∗
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(d) (A + B)∗ = A∗ + B∗

(e) ‖A∗‖ = ‖A‖.

2. Let (un) be a sequence of orthonormal vectors in a Hilbert space. Prove
that un converges to zero weakly.

3. Let A ∈ L(H) with H a Hilbert space. Prove that ρ(A∗) = ρ(A).

4. Let k : [0, 1]× [0, 1]→ R given by

k(x, y) =
N

∑
i=1

αi(x)βi(y),

for some continuous functions α1, . . . , αN , β1, . . . , βN on [0, 1]. Prove that
the operator K ∈ L(L2([0, 1])) defined by

(K f )(x) =
1∫

0

k(x, y) f (y)dy

is compact.

5. Let λ be an eigenvalue of A ∈ L(H) with H a Hilbert space. Is λ in the
spectrum of A∗? What can we say about the type of spectrum λ belongs
to?

6. Suppose A ∈ L(H) with H a Hilbert space and λ, µ ∈ ρ(A). Prove that
the resolvent Rλ of A satisfies the resolvent equation

Rλ − Rµ = (λ− µ)RλRµ.

7. Let H be a Hilbert space and M ⊂ H be a closed subspace. Let P : H →
H be the orthogonal projection of H onto M. Find σ(M).

8. Let A be a bounded, self-adjoint, nonnegative operator on a complex
Hilbert space. Prove that σ(A) ⊂ [0,+∞).

9. Let G be a multiplication operator on L2([0, 1]) defined by

G f (x) = x2 f (x).

Prove that G is a bounded linear operator on L2([0, 1]) and that its spec-
trum is given by [0, 1]. Does G have eigenvalues? Motivate your answer.

10. Let K : L2([0, 1])→ L2([0, 1]) be the integral operator defined by

K f (x) =
x∫

0

f (y)dy.

(a) Find the adjoint operator K∗
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6. Bounded operators on Hilbert spaces and spectral theory

(b) Find the operator norm ‖K‖ (Hint: use ‖K∗K‖ = ‖K‖2).

(c) Show that the spectral radius of K is equal to zero.

(d) Show that 0 belongs to the continuum spectrum of K.

11. Let `2(N) be the real Hilbert space of squared-summable sequences.
Define the right-shift operator S on `2(N) by

S(x)k =

{
xk−1 if k ≥ 2
0 if k = 1,

where x = (xk)
+∞
k=1 is in `2(N). Prove the following facts:

(a) ‖S‖ = 1.

(b) The point spectrum of S is empty.

(c) σ(S) = [−1, 1].

12. Define the left-shift operator T on `2(N) by

T(x)k = xk+1 for all k ≥ 1,

where x = (xk)
+∞
k=1 is in `2(N). Prove the following facts:

(a) ‖T‖ = 1.

(b) The point spectrum of T is given by (−1, 1).

(c) σ(T) = [−1, 1].

13. Let H = L2([−π, π]) and let K : H → H be defined by

(T f )(x) =
π∫
−π

|x− y| f (y)dy.

Using the Fourier’s series expansion

f (x) =
a0

2
+

+∞

∑
n=1

(an cos(nx) + bn sin(nx)),

find the spectrum of T.

14. Solve the following Fredholm integral equation for u(x) in L2([0, 2π]):

u(x) = cos x + λ

π∫
0

sin(x− y)u(y).

15. Solve the following Fredholm integral equation for u(x) in L2([0, 1]):

u(x) = ex + λ

1∫
0

(5x2 − 3)y2u(y).
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16. Discuss the existence of solutions to the following integral equation

u(x) = f (x) + λ

2π∫
0

sin(x + y)u(y)dy

for the two cases

(a) λ = 1/
√

π, f (x) = x2,
(b) λ = 1/π, f (x) = sin(3x)

6.7 Envisaged outcomes

At the end of this chapter the student should

• Be familiar with the notion of adjoint operator and the definition of
self-adjointness for bounded operators. Know the definition of unitary
operator.

• Know the basics of Fredholm’s alternative principle for closed range
operators.

• Know definition and examples of nonnegative operators, know how to
characterize the norm of a self-adjoint operator via its quadratic form.

• Be familiar with the uniform boundedness principle on Hilbert spaces
and its applications to weak convergence.

• Be familiar with Banach-Alaoglu’s theorem on the weak compactness of
the unit ball in a Hilbert space.

• Be familiar with the definition of resolvent, spectrum, eigenvalue, con-
tinuum spectrum, and residual spectrum of a bounded linear operator
on a Hilbert space.

• Know the main properties of the resolvent and the spectrum.

• Know the definition of spectral radius and be able to characterize it
using the operator norm.

• Be familiar with the structure of the spectrum of a compact self-adjoint
operator on a Hilbert space.

• In the exercises, the student should be able to recognize compact oper-
ators on a Hilbert space and to describe their spectrum in some special
cases.

• The student should be able to describe the spectrum of special class of
operators such as shift operators on sequence spaces, integral operators
of Volterra type, multiplication operators, simple convolution operators.

• Be familiar with the main properties of Hilbert-Schmidt operators.

• In the exercises, be able to solve some classes of integral equations using
Fredholm’s alternative principle.
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